91av视频/亚洲h视频/操亚洲美女/外国一级黄色毛片 - 国产三级三级三级三级

  • 大小: 9.16MB
    文件類型: .zip
    金幣: 1
    下載: 0 次
    發(fā)布日期: 2023-11-09
  • 語(yǔ)言: ASP
  • 標(biāo)簽: 理論??PDF??

資源簡(jiǎn)介

本書詳盡地介紹了計(jì)算機(jī)安全的理論與實(shí)踐,闡釋了該領(lǐng)域最基本和最普遍的知識(shí),包括計(jì)算機(jī)安全的本質(zhì)和面臨的挑戰(zhàn),策略與安全的關(guān)系,密碼學(xué)的角色與應(yīng)用,策略實(shí)現(xiàn)機(jī)制,保障技術(shù)和方法學(xué),脆弱性分析和入侵檢測(cè)等。同時(shí)把計(jì)算機(jī)系統(tǒng)、網(wǎng)絡(luò)、人為因素和密碼學(xué)等概念融為一體,本書可作為信息安全、計(jì)算機(jī)等相關(guān)專業(yè)本科生、研究生的教科書和學(xué)習(xí)參考書,也可作為維護(hù)網(wǎng)絡(luò)和計(jì)算機(jī)系統(tǒng)安全的管理人員、信息安全技術(shù)開發(fā)人員的工具書和參考書。 The importance of computer security has increased dramatically during the past few years. Bishop provides a monumental reference for the theory and practice of computer security. This is a textbook intended for use at the advanced undergraduate and introductory graduate levels, non-University training courses, as well as reference and self-study for security professionals. Comprehensive in scope, this covers applied and practical elements, theory, and the reasons for the design of applications and security techniques. Bishop treats the management and engineering issues of computer. Excellent examples of ideas and mechanisms show how disparate techniques and principles are combined (or not) in widely-used systems. Features a distillation of a vast number of conference papers, dissertations and books that have appeared over the years, providing a valuable synthesis. This book is acclaimed for its scope, clear and lucid writing, and its combination of formal and theoretical aspects with real systems, technologies, techniques, and policies. Preface Goals Philosophy Organization Roadmap Dependencies Background UndergraduateLevel GraduateLevel Practitioners SpecialAcknowledgment Acknowledgments PART1:INTRODUCTION ChapterIAnOverviewofComputerSecurity 1.1TheBasicComponents 1.2Threats 1.3PolicyandMechanism 1.4AssumptionsandTrust 1.5Assurance 1.6OperationalIssues 1.7HumanIssues 1.8TyingItAllTogether 1.9Summary 1.10ResearchIssues 1.11FurtherReading 1.12Exercises PART2:FOUNDATIONS Chapter2AccessControlMatrix 2.1ProtectionState 2.2AccessControlMatrixModel 2.3ProtectionStateTransitions 2.4Copying,Owning,andtheAttenuationofPrivilege 2.5Summary 2.6ResearchIssues 2.7FurtherReading 2.8Exercises Chapter3FoundationalResults 3.1TheGeneralQuestion 3.2BasicResults 3.3TheTake-GrantP

資源截圖

代碼片段和文件信息

import?pandas?as?pd
import?jieba
import?numpy

pd.set_option(‘display.height‘?9999)
pd.set_option(‘display.max_rows‘?9999)
pd.set_option(‘display.max_columns‘?9999)
pd.set_option(‘display.width‘?9999)

df_news?=?pd.read_table(“./data/val.txt“?names=[‘category‘?‘theme‘?‘URL‘?‘content‘]?encoding=“utf-8“)
df_news?=?df_news.dropna()#刪除有缺失值的行
#?print(df_news.shape)??#?(5000?4)

content?=?df_news[“content“].values.tolist()??#?新聞內(nèi)容list
#?print(content[1000])
content_S?=?[]??#?新聞內(nèi)容分詞之后的list
for?line?in?content:
????current_segment?=?jieba.lcut(line)
????if?len(current_segment)?>?1?and?current_segment?!=?“\r\n“:#換行符
????????content_S.append(current_segment)
#?print(content_S[1000])

df_content?=?pd.Dataframe({“content_S“:?content_S})
#?print(df_content.head())

stopwords?=?pd.read_csv(“stopwords.txt“?index_col=False?sep=“\t“?quoting=3?names=[‘stopword‘]?encoding=‘utf-8‘)


def?drop_stopwords(contents?stopwords):
????‘‘‘去除新聞中的停用詞‘‘‘
????contents_clean?=?[]??#?新聞中去掉停用詞
????all_words?=?[]??#?所有詞匯的集合(不包括停用詞)
????for?line?in?contents:
????????line_clean?=?[]
????????for?word?in?line:
????????????if?word?in?stopwords:
????????????????continue
????????????line_clean.append(word)
????????????all_words.append(word)
????????contents_clean.append(line_clean)
????return?contents_clean?all_words


contents?=?df_content[“content_S“].values.tolist()
stopwords?=?stopwords[“stopword“].values.tolist()

contents_clean?all_words?=?drop_stopwords(contents?stopwords)

df_content?=?pd.Dataframe({“contents_clean“:?contents_clean})
df_all_words?=?pd.Dataframe({‘a(chǎn)ll_words‘:?all_words})

words_count?=?df_all_words.groupby(by=[‘a(chǎn)ll_words‘])[‘a(chǎn)ll_words‘].agg({“count“:?numpy.size})
words_count?=?words_count.reset_index().sort_values(by=[“count“]?ascending=False)
#?print(words_count.head().values)
‘‘‘
[[‘中‘?5199]
?[‘中國(guó)‘?3115]
?[‘說(shuō)‘?3055]
?[‘S‘?2646]
?[‘萬(wàn)‘?2390]]
‘‘‘
from?wordcloud?import?WordCloud
import?matplotlib.pyplot?as?plt
import?matplotlib

matplotlib.rcParams[‘figure.figsize‘]?=?(10.0?5.0)

wordcloud?=?WordCloud(font_path=“./data/simhei.ttf“?background_color=“white“?max_font_size=80)
word_frequence?=?{x[0]:?x[1]?for?x?in?words_count.head(100).values}
wordcloud?=?wordcloud.fit_words(word_frequence)
plt.imshow(wordcloud)
plt.show()

‘‘‘TF-IDF?:提取關(guān)鍵詞‘‘‘
import?jieba.analyse

index?=?2400
print(df_news[‘content‘][index])
content_S_str?=?““.join(content_S[index])
print(“??“.join(jieba.analyse.extract_tags(content_S_str?topK=5?withWeight=False)))

‘‘‘LDA?:主題模型‘‘‘
from?gensim?import?corpora?models?similarities
import?gensim

#?做映射,相當(dāng)于詞袋
dictionary?=?corpora.Dictionary(contents_clean)
corpus?=?[dictionary.doc2bow(sentence)?for?sentence?in?contents_clean]
lda?=?gensim.models.ldamodel.LdaModel(corpus=corpus?id2word=dictionary?num_topics=20)??#?num_topics需要得到主題的數(shù)量
#?一號(hào)分類結(jié)果
print(lda.print_topic(1?topn=5))??#?第一類主題
for?topic?in?lda.print_topics(num_topics=20?num_words=5

?屬性????????????大小?????日期????時(shí)間???名稱
-----------?---------??----------?-----??----
?????目錄???????????0??2018-01-06?09:43??chapter16\
?????目錄???????????0??2018-01-05?20:38??chapter16\data\
?????文件????10044356??2017-06-14?23:56??chapter16\data\simhei.ttf
?????文件?????9948878??2017-07-25?08:24??chapter16\data\val.txt
?????文件??????365370??2018-01-06?09:13??chapter16\show_Chinese.png
?????文件???????17672??2017-06-14?23:55??chapter16\stopwords.txt
?????文件????????5463??2017-03-03?12:00??chapter16\中文停用詞庫(kù).txt
?????文件????????6038??2017-03-03?07:38??chapter16\哈工大停用詞表.txt
?????文件????????8571??2017-03-03?12:00??chapter16\四川大學(xué)機(jī)器智能實(shí)驗(yàn)室停用詞庫(kù).txt
?????文件????????5644??2018-01-06?09:43??chapter16\新聞分類任務(wù).py

評(píng)論

共有 條評(píng)論