資源簡介
用于信號去噪,光譜去噪,數據是使用近紅外光譜進行驗證,可以使用
代碼片段和文件信息
clc;clear;close?all
disp(‘原始數據,不同預處理方法進行處理的RMSECVRMSEP訓練集及預測集的R‘)
load?UV
cal????=?calset(:1:600);
caltar?=?calsettar;
for?columm??=?1:4;
????dataname???=?ynames{columm};
????disp(dataname);??????
???%----------------------------因子數的確定--------------------------------
???switch?columm
????case?1
?????????maxrank?=?8;
????????
????case?2
?????????maxrank?=?6;
?????????
????case?3
?????????maxrank?=?7;
????????
????case?4
?????????maxrank?=?6;????
????end?
????[mn]?????????????????????=?size(cal);
????%-----------------KS對數據劃分,訓練集2/3,預測集1/3---------------------
????[modeltest]????????????????????=?kenstone(calfloor(2/3*m));
????x_train?????????????????????????=?cal(model:);
????x_pred??????????????????????????=?cal(test:);
????y_train?????????????????????????=?caltar(modelcolumm);
????y_pred??????????????????????????=?caltar(testcolumm);
????[m_trainn_train]???????????????=?size(x_train);
????%-------------------------------PLS------------------------------------
????disp(‘偏最小二乘-PLS‘)
????b???????????????????????????????=?simpls(x_trainy_trainmaxrank);
????c???????????????????????????????=?x_pred*b(:maxrank);
????[c_trainvalpresses]????????????=?loocv(x_trainy_trainmaxrank);
????disp(‘RMSECVRMSEP訓練集及預測集的R‘);
????rmsecv_PLS??????????????????????=?sqrt(valpresses./m_train);
????rmsep_PLS???????????????????????=?rms(c-y_pred);
????r_train?????????????????????????=?corrcoef(c_trainy_train);
????r_train?????????????????????????=?r_train(12);
????r_PLS???????????????????????????=?corrcoef(cy_pred);
????r_PLS???????????????????????????=?r_PLS(12);
????disp([rmsecv_PLSrmsep_PLSr_trainr_PLS]);
????disp(‘回收率最大最小值‘);
????recovery_PLS????????????????????=?100*c./y_pred;
????max_recovery_PLS(columm)????????=?max(recovery_PLS);
????min_recovery_PLS(columm)????????=?min(recovery_PLS);
????disp([max_recovery_PLS(columm)min_recovery_PLS(columm)]);
????clear?b?c?c_train?valpresses?r_train?
????%-----------------------------
評論
共有 條評論