資源簡介
Control vector parameterization, also known as direct sequential method, is one of the direct optimization methods for solving optimal control problems. The basic idea of direct optimization methods is to discretize the control problem, and then apply nonlinear programming (NLP) techniques to the resulting finite-dimensional optimization problem.
Contents
? Problem Statement
? Parameter Configurations
? Piecewise constant control
? Continuous linear spline control

代碼片段和文件信息
function?M?=?animateopt(?toptxoptuoptthetaoptbetaNrho?)
%ANIMATEOPT?animate?the?optimal?state?trajectory
[toptu?idx]?=?unique(topt);
xoptu?=?xopt(idx:);?%unique(xopt‘rows‘);
uoptu?=?uopt(idx);
thetaoptu?=?thetaopt(idx);?%?remove?duplicate?values
t?=?0:0.1:6;
xoi?=?interp1(toptuxoptut);
uoi?=?interp1(toptuuoptut);?%?trust?$u$
haoi?=?atan(xoi(:4)./xoi(:3));?%?heading?angle
haoi(1)?=?haoi(2);
toi?=?interp1(toptuthetaoptut);?%?trust?angle?$\theta$
[xy]?=?meshgrid(-1:0.5:5);
fx?=?(beta*(3-x))./((y.^2+(x-3).^2).^(3/2));
fy?=?(-beta*y)./((y.^2+(x-3).^2).^(3/2));
figure;
for?k=1:length(t)
????%?contruct?the?shape?of?a?boat?around?the?point?with?respect?to?
????%?heading?angle
????bx=?xoi(k1)+?[0.2*cos(haoi(k)-0.5)?0.3*cos(haoi(k))?...
????????0.2*cos(haoi(k)+0.5)?0.2*cos(haoi(k)-0.5)?...
????????-0.2*cos(haoi(k)+0.5)?-0.3*cos(haoi(k))?...
????????-0.2*cos(haoi(k)-0.5)?-0.2*cos(haoi(k)+0.5)?...
????????-0.2*cos(haoi(k)-0.5)?0.2*cos(haoi(k)+0.5)];
????by=?xoi(k2)+?[0.2*sin(haoi(k)-0.5)?0.3*sin(haoi(k))?...
????????0.2*sin(haoi(k)+0.5)?0.2*sin(haoi(k)-0.5)?...
????????-0.2*sin(haoi(k)+0.5)?-0.3*sin(haoi(k))?...
????????-0.2*sin(haoi(k)-0.5)?-0.2*sin(haoi(k)+0.5)?...
????????-0.2*sin(haoi(k)-0.5)?0.2*sin(haoi(k)+0.5)];
????plot(xoi(1:k1)xoi(1:k2)‘b-‘bxby‘b-‘[0?3?4][0?0?4]‘ko‘...
????[xoi(k1)xoi(k1)+uoi(k)/max(abs(uoptu))*cos(toi(k))]...
????????[xoi(k2)xoi(k2)+uoi(k)/max(abs(uoptu))*sin(toi(k))]...
????????‘r:‘‘LineWidth‘2);?%?using?red?dotted?line?to?denote?direction?of
????%?the?trust?and?its?length?is?proportional?to?the?control?effort?$u$
????hold?on;quiver(xyfxfy1‘LineWidth‘2‘Color‘‘black‘);hold?off
????xlabel(‘x_1(t)‘‘fontsize‘14)
????ylabel(‘x_2(t)‘‘fontsize‘14)
????set(gca‘FontSize‘12)
????title([‘\beta=‘int2str(beta)‘?N=‘int2str(N)‘?\rho=‘int2str(rho)])
????xlim([-1?5]);ylim([-1?5]);
????axis?square;
????M(k)?=?getframe(gcf);
end
end
?屬性????????????大小?????日期????時間???名稱
-----------?---------??----------?-----??----
?????目錄???????????0??2020-04-27?13:00??Optimal_Control\
?????文件??????138389??2020-03-13?22:47??Optimal_Control\Optimal?Control?Using?Control?Vector?Parameterization.docx
?????文件????????1969??2012-12-18?23:35??Optimal_Control\animateopt.m
?????文件?????????351??2012-12-18?23:10??Optimal_Control\confun1.m
?????文件?????????365??2012-12-18?23:13??Optimal_Control\confun2.m
?????文件?????????247??2012-04-16?11:29??Optimal_Control\costfun1.m
?????文件?????????259??2012-04-16?11:29??Optimal_Control\costfun2.m
?????文件?????????354??2012-04-16?11:30??Optimal_Control\dyneqn1.m
?????文件?????????461??2012-04-16?11:30??Optimal_Control\dyneqn2.m
?????目錄???????????0??2020-03-10?12:47??Optimal_Control\html\
?????文件???????21242??2012-12-19?03:22??Optimal_Control\html\mainproc.html
?????文件????????2611??2012-12-19?03:22??Optimal_Control\html\mainproc.png
?????文件????????6632??2012-12-19?03:18??Optimal_Control\html\mainproc_01.png
?????文件????????4447??2012-12-19?03:18??Optimal_Control\html\mainproc_02.png
?????文件????????4342??2012-12-19?03:18??Optimal_Control\html\mainproc_03.png
?????文件????????6635??2012-12-19?03:18??Optimal_Control\html\mainproc_04.png
?????文件????????6665??2012-12-19?03:22??Optimal_Control\html\mainproc_05.png
?????文件????????5947??2012-12-19?03:22??Optimal_Control\html\mainproc_06.png
?????文件????????6066??2012-12-19?03:22??Optimal_Control\html\mainproc_07.png
?????文件????????6678??2012-12-19?03:22??Optimal_Control\html\mainproc_08.png
?????文件????????3232??2012-12-17?22:53??Optimal_Control\html\mainproc_eq04112.png
?????文件?????????460??2012-12-18?04:56??Optimal_Control\html\mainproc_eq05153.png
?????文件?????????377??2012-12-17?22:25??Optimal_Control\html\mainproc_eq06004.png
?????文件????????1238??2012-12-17?22:25??Optimal_Control\html\mainproc_eq08269.png
?????文件????????2868??2012-12-17?22:53??Optimal_Control\html\mainproc_eq08551.png
?????文件????????7994??2012-12-17?23:00??Optimal_Control\html\mainproc_eq17708.png
?????文件?????????813??2012-12-17?22:30??Optimal_Control\html\mainproc_eq19825.png
?????文件?????????314??2012-12-18?04:56??Optimal_Control\html\mainproc_eq20099.png
?????文件?????????813??2012-12-17?22:33??Optimal_Control\html\mainproc_eq33539.png
?????文件?????????277??2012-12-17?22:25??Optimal_Control\html\mainproc_eq35435.png
?????文件????????1827??2012-12-17?22:32??Optimal_Control\html\mainproc_eq39630.png
............此處省略18個文件信息
評論
共有 條評論