-
大小: 4KB文件類型: .m金幣: 1下載: 0 次發(fā)布日期: 2021-06-01
- 語言: Matlab
- 標簽:
資源簡介
樸素貝葉斯算法,matlab程序,極大似然估計,貝葉斯估計
代碼片段和文件信息
%?樸素Bayes算法的極大似然估計和貝葉斯估計
%?兩種方法都能得到結果
close?all
clear?all
clc
syms?Y?X1?X2
syms?M?S?L?%訓練數(shù)據(jù)集
T=[111112222233333;SMMSSSMMLLLMMLL;-1-111-1-1-11111111-1];
%%%%%%%%%%%%%%%%%極大似然估計%%%%%%%%%%%%%%%
%先驗概率
P_Posive1?=?length(find(T(3:)==1))/size(T2);??%P_Posive1變量名的含義是P(Y=1),以下類比
P_Negtive1?=?length(find(T(3:)==-1))/size(T2);
%條件概率
cols12=find(T(3:)==1);%在Y=1的條件下計算各個條件概率
P_X1_1atY_Posive1?=?length((find(T(1cols12)==1)))/length(find(T(3:)==1));%P_X1_1atY_Posive1變量名的含義是P(X1=1|Y=1),以下類比
P_X1_2atY_Posive1?=?length((find(T(1cols12)==2)))/length(find(T(3:)==1));
P_X1_3atY_Posive1?=?length((find(T(1cols12)==3)))/length(find(T(3:)==1));
P_X2_SatY_Posive1?=?length((find(T(2cols12)==S)))/length(find(T(3:)==1));
P_X2_MatY_Posive1?=?length((find(T(2cols12)==M)))/length(find(T(3:)==1));
P_X2_LatY_Posive1?=?length((find(T(2cols12)==L)))/length(find(T(3:)==1));
cols2=find(T(3:)==-1);%在Y=-1的條件下計算各個條件概率
P_X1_1atY_Negtive1?=?length((find(T(1cols2)==1)))/length(find(T(3:)==-1));
P_X1_2atY_Negtive1?=?length((find(T(1cols2)==2)))/length(find(T(3:)==-1));
P_X1_3atY_Negtive1?=?length((find(T(1cols2)==3)))/length(find(T(3:)==-1));
P_X2_SatY_Negtive1?=?length((find(T(2cols2)==S)))/length(find(T(3:)==-1));
P_X2_MatY_Negtive1?=?length((find(T(2cols2)==M)))/length(find(T(3:)==-1));
P_X2_LatY_Negtive1?=?length((find(T(2cols2)==L)))/length(find(T(3:)==-1));
%對于給定的x=(2,S)計算其后驗概率
P_Y_Posive1andX1_2atY_1andX2_SatY_1?=?P_Posive1*P_X1_2atY_Posive1*P_X2_SatY_Posive1;
P_Y_Negtive1andX1_2atY_1andX2_SatY_1?=?P_Negtive1*P_X1_2atY_Negtive1*P_X2_SatY_Negtive1;
%給出結果標記
if?P_Y_Posive1andX1_2atY_1andX2_SatY_1>P_Y_Negtive1andX1_2atY_1andX2_SatY_1
????fpr
- 上一篇:納什均衡點
- 下一篇:3D圖工具箱 matlab
評論
共有 條評論