資源簡(jiǎn)介
【完整程序+直接可運(yùn)行+實(shí)驗(yàn)結(jié)果截圖】方便學(xué)習(xí)。
克里金(Kriging)插值法又稱空間自協(xié)方差最佳插值法,它是以南非礦業(yè)工程師D.G.Krige的名字命名的一種最優(yōu)內(nèi)插法。克里金法廣泛地應(yīng)用于地下水模擬、土壤制圖等領(lǐng)域,是一種很有用的地質(zhì)統(tǒng)計(jì)格網(wǎng)化方法。它首先考慮的是空間屬性在空間位置上的變異分布.確定對(duì)一個(gè)待插點(diǎn)值有影響的距離范圍,然后用此范圍內(nèi)的采樣點(diǎn)來估計(jì)待插點(diǎn)的屬性值。該方法在數(shù)學(xué)上可對(duì)所研究的對(duì)象提供一種最佳線性無偏估計(jì)(某點(diǎn)處的確定值)的方法。它是考慮了信息樣品的形狀、大小及與待估計(jì)塊段相互間的空間位置等幾何特征以及品位的空間結(jié)構(gòu)之后,為達(dá)到線性、無偏和最小估計(jì)方差的估計(jì),而對(duì)每一個(gè)樣品賦與一定的系數(shù),最后 進(jìn)行加權(quán)平均來估計(jì)塊段品位的方法。但它仍是一種光滑的內(nèi)插方法 在數(shù)據(jù)點(diǎn)多時(shí),其內(nèi)插的結(jié)果可信度較高 。

代碼片段和文件信息
function?[xfvalexitflagoutput]?=?fminsearchbnd(funx0LBUBoptionsvarargin)
%?FMINSEARCHBND:?FMINSEARCH?but?with?bound?constraints?by?transformation
%?usage:?x=FMINSEARCHBND(funx0)
%?usage:?x=FMINSEARCHBND(funx0LB)
%?usage:?x=FMINSEARCHBND(funx0LBUB)
%?usage:?x=FMINSEARCHBND(funx0LBUBoptions)
%?usage:?x=FMINSEARCHBND(funx0LBUBoptionsp1p2...)
%?usage:?[xfvalexitflagoutput]=FMINSEARCHBND(funx0...)
%?
%?arguments:
%??fun?x0?options?-?see?the?help?for?FMINSEARCH
%
%??LB?-?lower?bound?vector?or?array?must?be?the?same?size?as?x0
%
%???????If?no?lower?bounds?exist?for?one?of?the?variables?then
%???????supply?-inf?for?that?variable.
%
%???????If?no?lower?bounds?at?all?then?LB?may?be?left?empty.
%
%???????Variables?may?be?fixed?in?value?by?setting?the?corresponding
%???????lower?and?upper?bounds?to?exactly?the?same?value.
%
%??UB?-?upper?bound?vector?or?array?must?be?the?same?size?as?x0
%
%???????If?no?upper?bounds?exist?for?one?of?the?variables?then
%???????supply?+inf?for?that?variable.
%
%???????If?no?upper?bounds?at?all?then?UB?may?be?left?empty.
%
%???????Variables?may?be?fixed?in?value?by?setting?the?corresponding
%???????lower?and?upper?bounds?to?exactly?the?same?value.
%
%?Notes:
%
%??If?options?is?supplied?then?TolX?will?apply?to?the?transformed
%??variables.?All?other?FMINSEARCH?parameters?should?be?unaffected.
%
%??Variables?which?are?constrained?by?both?a?lower?and?an?upper
%??bound?will?use?a?sin?transformation.?Those?constrained?by
%??only?a?lower?or?an?upper?bound?will?use?a?quadratic
%??transformation?and?unconstrained?variables?will?be?left?alone.
%
%??Variables?may?be?fixed?by?setting?their?respective?bounds?equal.
%??In?this?case?the?problem?will?be?reduced?in?size?for?FMINSEARCH.
%
%??The?bounds?are?inclusive?inequalities?which?admit?the
%??boundary?values?themselves?but?will?not?permit?ANY?function
%??evaluations?outside?the?bounds.?These?constraints?are?strictly
%??followed.
%
%??If?your?problem?has?an?EXCLUSIVE?(strict)?constraint?which?will
%??not?admit?evaluation?at?the?bound?itself?then?you?must?provide
%??a?slightly?offset?bound.?An?example?of?this?is?a?function?which
%??contains?the?log?of?one?of?its?parameters.?If?you?constrain?the
%??variable?to?have?a?lower?bound?of?zero?then?FMINSEARCHBND?may
%??try?to?evaluate?the?function?exactly?at?zero.
%
%
%?Example?usage:
%?rosen?=?@(x)?(1-x(1)).^2?+?105*(x(2)-x(1).^2).^2;
%
%?fminsearch(rosen[3?3])?????%?unconstrained
%?ans?=
%????1.0000????1.0000
%
%?fminsearchbnd(rosen[3?3][2?2][])?????%?constrained
%?ans?=
%????2.0000????4.0000
%
%?See?test_main.m?for?other?examples?of?use.
%
%
%?See?also:?fminsearch?fminspleas
%
%
%?Author:?John?D‘Errico
%?E-mail:?woodchips@rochester.rr.com
%?Release:?4
%?Release?date:?7/23/06
%?size?checks
xsize?=?size(x0);
x0?=?x0(:);
n=length(x0);
if?(nargin<3)?||?isempty(LB)
??LB?=?repmat(-infn1);
else
??LB?=?LB(:);
end
if?(nargin<4)?||?isempty(UB)
??UB?=?repmat(infn1);
else
??UB?=?UB(:);
end
if?(n~=lengt
?屬性????????????大小?????日期????時(shí)間???名稱
-----------?---------??----------?-----??----
?????文件???????3452??2013-04-03?19:35??variogramfit\dataset.txt
?????文件???????8139??2012-02-06?06:53??variogramfit\fminsearchbnd.m
?????文件???????6374??2010-10-14?09:01??variogramfit\kriging.m
?????文件???????1045??2018-10-05?22:46??variogramfit\kshiyan.m
?????文件???????6780??2018-10-04?22:58??variogramfit\tefit.m
?????文件??????27961??2018-11-14?09:19??variogramfit\tefit運(yùn)行結(jié)果.jpg
?????文件???????2146??2018-10-04?16:39??variogramfit\test.m
?????文件??????82460??2018-11-14?09:16??variogramfit\test運(yùn)行結(jié)果.jpg
?????文件???????2235??2018-10-04?22:49??variogramfit\teva.m
?????文件??????65317??2018-11-14?09:18??variogramfit\teva運(yùn)行結(jié)果.jpg
?????文件???????9128??2018-10-03?16:49??variogramfit\variogram.m
?????文件??????18299??2010-10-13?14:59??variogramfit\variogramfit.m
?????目錄??????????0??2018-11-14?09:19??variogramfit
-----------?---------??----------?-----??----
???????????????233336????????????????????13
評(píng)論
共有 條評(píng)論