資源簡介
使用神經網絡進行預測,有BF,FF,GRNN,RBF網絡等,

代碼片段和文件信息
function?PF=myNNet(InPeriod)?
%程序說明:Period為預測期數;PF為所有變量預測值的矩陣;MSE為樣本的均方誤差;
%%載入文件
%?In=load(‘GDP.txt‘);
%%%數據歸一化處理
In=In‘;
[ab]=size(In);
P=In(1:a-1:)‘;
T=In(2:a:)‘;
[PnPminPmaxTnTminTmax]=premnmx(PT);%歸一化-1~1之間
%%創建一個隱藏層含三個神經元的三層神經網絡
net=newff(minmax(Pn)[4b]{‘tansig‘‘purelin‘}‘traingdm‘);
%?%%設置輸入層參數
%?inputWeights=net.IW{11};
%?inputbias=net.b{1};
%?%%設置隱藏層參數
%?layerWeights=net.LW{11};
%?layerbias=net.b{2};
%?%%設置訓練參數
net.trainParam.show=100;
net.trainParam.lr=0.5;
net.trainParam.epochs=10000;
net.trainParam.mc=0.9;
net.trainParam.goal=1e-3;
%%訓練網絡
net=train(netPnTn);
%%仿真
A=sim(netPn);
%%計算殘差
E=Tn-A;
ms=mse(E);
%%預測Period期
P1=In(a:)‘;
k=Period;
for?i=1:k
????P1=tramnmx(P1PminPmax);%預測數據歸一化
????T1=sim(netP1);
????T1=postmnmx(T1TminTmax);%反歸一化
????if?i==1
????????PF=T1;
????else
????????PF=[PFT1];
????end
????[cd]=size(PF);
????P1=PF(:d);
end
PF=PF‘;
save?‘result.txt‘?PF?-ascii?;
?屬性????????????大小?????日期????時間???名稱
-----------?---------??----------?-----??----
?????文件???????1847??2010-01-08?21:10??QG.txt
?????文件???????1097??2010-01-08?22:06??myNNet.m
?????文件???????1661??2010-01-13?15:16??NNetFF.m
?????文件???????1374??2010-01-13?15:21??NNetGRNN.m
?????文件???????1428??2010-01-13?15:21??NNetRBF.m
?????文件????????267??2010-01-07?10:54??testmain.java
-----------?---------??----------?-----??----
?????????????????7674????????????????????6
評論
共有 條評論