資源簡介
svm支持向量機的matlab 代碼,可進行多目標分類及線性回歸、預測!

代碼片段和文件信息
%?支持向量機用于多類模式分類?-?必須選擇最優參數?gamsig2
%?工具箱:LS_SVMlab
%?使用平臺:Matlab6.5
%?作者:陸振波,海軍工程大學
%?歡迎同行來信交流與合作,更多文章與程序下載請訪問我的個人主頁
%?電子郵件:luzhenbo@yahoo.com.cn
%?個人主頁:http://luzhenbo.88uu.com.cn
clc
clear
close?all
%---------------------------------------------------
%?產生訓練樣本與測試樣本,每一列為一個樣本
n1?=?[rand(35)rand(35)+1rand(35)+2];
x1?=?[1*ones(15)2*ones(15)3*ones(15)];?????%?特別注意:這里的目標與神經網絡不同
n2?=?[rand(35)rand(35)+1rand(35)+2];
x2?=?[1*ones(15)2*ones(15)3*ones(15)];?????%?特別注意:這里的目標與神經網絡不同
xn_train?=?n1;??????????%?訓練樣本
dn_train?=?x1;??????????%?訓練目標
xn_test?=?n2;???????????%?測試樣本
dn_test?=?x2;???????????%?測試目標
%---------------------------------------------------
%?參數設置
X?=?xn_train‘;
Y?=?dn_train‘;
Xt?=?xn_test‘;
Yt?=?dn_test‘;
type?=?‘c‘;
kernel_type?=?‘RBF_kernel‘;
gam?=?2;
sig2?=?2;
preprocess?=?‘preprocess‘;
codefct?=?‘code_OneVsAll‘;???????????
%?將“多類”轉換成“兩類”的編碼方案
%?1.?Minimum?Output?Coding?(code_MOC)?
%?2.?Error?Correcting?Output?Code?(code_ECOC)
%?3.?One?versus?All?Coding?(code_OneVsAll)
%?4.?One?Versus?One?Coding?(code_OneVsOne)?
%---------------------------------------------------
%?編碼
[Yccodebookold_codebook]?=?code(Ycodefct)
%---------------------------------------------------
%?交叉驗證優化參數
%[gamsig2]?=?tunelssvm({XYctypegamsig2kernel_typepreprocess})
%---------------------------------------------------
%?訓練與測試
[alphab]?=?trainlssvm({XYctypegamsig2kernel_typepreprocess});???????????%?訓練
Yd0?=?simlssvm({XYctypegamsig2kernel_typepreprocess}{alphab}Xt);??????%?分類
%---------------------------------------------------
%?解碼
Yd?=?code(Yd0old_codebook[]codebook);
%---------------------------------------------------
%?結果統計
Result?=?~abs(Yd-Yt)???????????????%?正確分類顯示為1
Percent?=?sum(Result)/length(Result)???%?正確分類率
%---------------------------------------------------
%?注意:以這兩種寫法等價
%?--?1?--
%?[Yccodebookold_codebook]?=?code(Y?codefct)
%?[alpha?b]?=?trainlssvm({XYctypegamsig2kernelpreprocess})
%?Yd0?=?simlssvm({XYctypegamsig2kernel}?{alphab}?Xt)
%?Yd?=?code(Yd0old_codebook[]codebook)
%?--?2?--
%?model?=?initlssvm(XYtypegamsig2kernelpreprocess)
%?model?=?changelssvm(model‘codetype‘codefct)
%?model?=?trainlssvm(model)
%?Yd?=?simlssvm(model?Xt)
?屬性????????????大小?????日期????時間???名稱
-----------?---------??----------?-----??----
?????文件???????1638??2008-01-04?15:52??SVM-tool\a.mat
?????文件???????1639??2008-01-09?22:09??SVM-tool\aa.mat
?????文件???????1638??2008-01-04?15:52??SVM-tool\b.mat
?????文件???????1639??2008-01-09?22:09??SVM-tool\bb.mat
?????文件???????2575??2007-12-26?19:33??SVM-tool\Classification_LS_SVMlab.m
?????文件???????2075??2007-03-15?14:09??SVM-tool\Classification_OSU_SVM.m
?????文件???????2351??2007-03-15?14:09??SVM-tool\Classification_stprtool.m
?????文件???????1542??2007-03-15?14:09??SVM-tool\Classification_SVM_SteveGunn.m
?????文件???????2738??2003-02-21?22:39??SVM-tool\LS_SVMlab\AFE.m
?????文件???????5785??2003-02-21?22:39??SVM-tool\LS_SVMlab\bay_errorbar.m
?????文件???????2003??2003-02-21?22:39??SVM-tool\LS_SVMlab\bay_initlssvm.m
?????文件??????10345??2003-02-21?22:39??SVM-tool\LS_SVMlab\bay_lssvm.m
?????文件???????8187??2003-02-21?22:39??SVM-tool\LS_SVMlab\bay_lssvmARD.m
?????文件???????9358??2003-02-21?22:39??SVM-tool\LS_SVMlab\bay_modoutClass.m
?????文件???????5977??2003-02-21?22:39??SVM-tool\LS_SVMlab\bay_optimize.m
?????文件???????4178??2003-02-21?22:39??SVM-tool\LS_SVMlab\bay_rr.m
?????文件????????164??2005-04-15?21:53??SVM-tool\LS_SVMlab\buffer.mc
?????文件???????5632??2003-02-21?22:39??SVM-tool\LS_SVMlab\changelssvm.m
?????文件???????4245??2005-04-15?19:10??SVM-tool\LS_SVMlab\code.asv
?????文件???????4245??2005-04-15?19:11??SVM-tool\LS_SVMlab\code.m
?????文件???????2118??2003-02-21?22:39??SVM-tool\LS_SVMlab\codedist_bay.m
?????文件????????756??2003-02-21?22:39??SVM-tool\LS_SVMlab\codedist_hamming.m
?????文件???????2018??2003-02-21?22:39??SVM-tool\LS_SVMlab\codedist_loss.m
?????文件???????4125??2003-02-21?22:39??SVM-tool\LS_SVMlab\codelssvm.m
?????文件???????5197??2003-02-21?22:39??SVM-tool\LS_SVMlab\code_ECOC.m
?????文件????????550??2003-02-21?22:39??SVM-tool\LS_SVMlab\code_MOC.m
?????文件????????364??2003-02-21?22:39??SVM-tool\LS_SVMlab\code_OneVsAll.m
?????文件????????555??2003-02-21?22:39??SVM-tool\LS_SVMlab\code_OneVsOne.m
?????文件?????????32??2003-03-20?09:24??SVM-tool\LS_SVMlab\Contents.m
?????文件???????8174??2003-02-21?22:39??SVM-tool\LS_SVMlab\crossvalidate.m
............此處省略409個文件信息
- 上一篇:matlab學習手冊
- 下一篇:matlab r2013b crack
評論
共有 條評論