資源簡介
該代碼實現的是有一個隱層的復數神經網絡,隱層采用的是tanh為激勵函數
代碼片段和文件信息
%Double_CVNN
%運用輸入層-隱含層-輸出層的BP算法結構,隱層、輸出層的激勵函數都為1/(1+exp(x))
%采用梯度下降算法進行訓練
clear?all;
clc
load?GestData;
%inputs=rand(1100)+i*rand(1100);
%targets=inputs.^2;
N=size(inputs2)/2;
IN=size(inputs1);
HN=10;
ON=size(targets1);
input=inputs(:1:260);
output=targets(:1:260);
Pre_err=0.2;
traintimes=5000;
%?對各個參數進行初始化
W=rand(HNIN‘double‘)-0.5+i*(rand(HNIN‘double‘)-0.5);
V=rand(ONHN)-0.5+i*(rand(ONHN)-0.5);
output=exp(i*pi/2*targets);
IH=zeros(NHN);
OH=zeros(NHN);
seta=(rand(NHN)-0.5)+i*(rand(NHN)-0.5);%隱層閾值
IO=zeros(NON);
OO=zeros(NON);
gama=(rand(NON)-0.5)+i*(rand(NON)-0.5);%輸出層閾值
e_err=zeros(NHN);
delat_w=zeros(ONIN);
study_number=1;
abs_err=zeros(ONN);
J=zeros(traintimes1);
up=0;
gi_r=ones(traintimes1);
gi_i=ones(traintimes1);
max
評論
共有 條評論