資源簡(jiǎn)介
一、橢圓型偏微分方程
1. Helmholtz方程 及 特例(Possion方程, Laplace方程); Helmholtz.m possion
2. 滿足牛頓邊值條件的Helmholtz方程;Helmholtz_Newton.m
二、拋物線型偏微分方程
1. 顯式前向歐拉法 EF_Euler.m
2. 隱式
代碼片段和文件信息
function?[uxt]?=?ECD_Wave(AxfTit0i1t0bx0bxfMN)
%解方程a?u_xx?=?u_tt?for?0<=x<=xf?0<=t<=T
%?初始條件:?u(x0)?=?it0(x)?u_t(x0)?=?i1t0(x)
%?邊界條件:?u(0t)=?bx0(t)?u(xft)?=?bxf(t)
%?M?:沿x軸的等分段數(shù)
%?N?:沿y軸的等分段數(shù)
dx?=?xf/M;?x?=?[0:M]‘*dx;
dt?=?T/N;?t?=?[0:N]*dt;
for?i?=?1:M?+?1
????u(i1)?=?it0(x(i));?
end
for?k?=?1:N?+?1
????u([1?M?+?1]k)?=?[bx0(t(k));?bxf(t(k))];
end
r?=?A*(dt/dx)^?2;?r1?=?r/2;?r2?=?2*(1?-?r);
u(2:M2)?=?r1*u(1:M?-?11)?+?(1?-?r)*u(2:M1)?+?r1*u(3:M?+?11)?+?dt*i1t0(x(2:M));?%(11.3.4)
for?k?=?3:N?+?1
????u(2:Mk)?=?r*u(1:M?-?1k?-?1)?+?r2*u(2:Mk-1)?+?r*u(3:M?+?1k?-?1)-?u(2:Mk?-?2);?%(11.3.3)
end
?屬性????????????大小?????日期????時(shí)間???名稱
-----------?---------??----------?-----??----
?????文件?????????667??2007-01-21?14:33??Numerical?Methods?for?PDE\ECD_Wave.m
?????文件?????????578??2007-01-20?14:51??Numerical?Methods?for?PDE\EF_Euler.m
?????文件?????????472??2007-01-24?13:47??Numerical?Methods?for?PDE\fem_basis_ftn.m
?????文件????????1072??2007-01-24?14:50??Numerical?Methods?for?PDE\fem_coef.m
?????文件?????????767??2007-01-20?20:10??Numerical?Methods?for?PDE\Grank_Nicholson.m
?????文件????????1310??2007-01-19?10:43??Numerical?Methods?for?PDE\Helmholtz.m
?????文件????????1629??2007-01-19?19:48??Numerical?Methods?for?PDE\Helmholtz_Newton.m
?????文件?????????663??2007-01-20?19:41??Numerical?Methods?for?PDE\IB_Euler.m
?????文件????????1304??2007-01-19?10:19??Numerical?Methods?for?PDE\possion.m
?????文件????????1549??2007-01-24?14:50??Numerical?Methods?for?PDE\Show_Basis.m
?????文件????????1696??2007-01-21?14:00??Numerical?Methods?for?PDE\TDE.m
?????文件????????1435??2007-01-21?15:45??Numerical?Methods?for?PDE\Wave2.m
評(píng)論
共有 條評(píng)論