-
大小: 16KB文件類型: .rar金幣: 1下載: 0 次發布日期: 2021-02-12
- 語言: Matlab
- 標簽: keyword=auto??深度網絡??深度神經??
資源簡介
神經網絡中深度學習理論的求解算法,發掘數據中的結構信息
代碼片段和文件信息
%?Version?1.000
%
%?Code?provided?by?Ruslan?Salakhutdinov?and?Geoff?Hinton
%
%?Permission?is?granted?for?anyone?to?copy?use?modify?or?distribute?this
%?program?and?accompanying?programs?and?documents?for?any?purpose?provided
%?this?copyright?notice?is?retained?and?prominently?displayed?along?with
%?a?note?saying?that?the?original?programs?are?available?from?our
%?web?page.
%?The?programs?and?documents?are?distributed?without?any?warranty?express?or
%?implied.??As?the?programs?were?written?for?research?purposes?only?they?have
%?not?been?tested?to?the?degree?that?would?be?advisable?in?any?important
%?application.??All?use?of?these?programs?is?entirely?at?the?user‘s?own?risk.
%?This?program?fine-tunes?an?autoencoder?with?backpropagation.
%?Weights?of?the?autoencoder?are?going?to?be?sa
?屬性????????????大小?????日期????時間???名稱
-----------?---------??----------?-----??----
?????文件???????5594??2006-05-21?11:34??Autoencoder_Code\backprop.m
?????文件???????5474??2006-06-20?09:49??Autoencoder_Code\backpropclassify.m
?????文件???????1853??2006-06-20?09:49??Autoencoder_Code\CG_CLASSIFY.m
?????文件???????1136??2006-06-20?09:49??Autoencoder_Code\CG_CLASSIFY_INIT.m
?????文件???????2727??2006-06-20?09:49??Autoencoder_Code\CG_MNIST.m
?????文件???????3011??2006-06-20?09:49??Autoencoder_Code\converter.m
?????文件???????4169??2006-06-20?09:49??Autoencoder_Code\makebatches.m
?????文件???????1902??2006-06-20?09:49??Autoencoder_Code\mnistclassify.m
?????文件???????2199??2006-06-20?09:49??Autoencoder_Code\mnistdeepauto.m
?????文件???????1084??2006-06-20?09:49??Autoencoder_Code\mnistdisp.m
?????文件???????3914??2006-06-20?09:49??Autoencoder_Code\rbm.m
?????文件???????3964??2006-06-20?09:49??Autoencoder_Code\rbmhidlinear.m
?????文件???????2934??2006-07-13?23:40??Autoencoder_Code\README.txt
?????目錄??????????0??2012-06-27?15:02??Autoencoder_Code
-----------?---------??----------?-----??----
????????????????39961????????????????????14
評論
共有 條評論