91av视频/亚洲h视频/操亚洲美女/外国一级黄色毛片 - 国产三级三级三级三级

資源簡介

布谷鳥搜索(Cuckoo Search),即杜鵑搜索,由劍橋大學楊新社教授和S.戴布(S.Deb)于2009年提出的一種新興啟發算法。 CS算法是通過模擬某些種屬布谷鳥的寄生育雛(Brood Parasitism) ,來有效地求解最優化問題的算法。同時,CS也采用相關的Levy飛行搜索機制。研究表明,布谷鳥搜索比其他群體優化算法更有效。

資源截圖

代碼片段和文件信息

%?-----------------------------------------------------------------
%?Cuckoo?Search?(CS)?algorithm?by?Xin-She?Yang?and?Suash?Deb??????%
%?Programmed?by?Xin-She?Yang?at?Cambridge?University??????????????%
%?Programming?dates:?Nov?2008?to?June?2009????????????????????????%
%?Last?revised:?Dec??2009???(simplified?version?for?demo?only)????%
%?-----------------------------------------------------------------
%?Papers?--?Citation?Details:
%?1)?X.-S.?Yang?S.?Deb?Cuckoo?search?via?Levy?flights
%?in:?Proc.?of?World?Congress?on?Nature?&?Biologically?Inspired
%?Computing?(NaBIC?2009)?December?2009?India
%?IEEE?Publications?USA??pp.?210-214?(2009).
%?http://arxiv.org/PS_cache/arxiv/pdf/1003/1003.1594v1.pdf?
%?2)?X.-S.?Yang?S.?Deb?Engineering?optimization?by?cuckoo?search
%?Int.?J.?Mathematical?Modelling?and?Numerical?Optimisation?
%?Vol.?1?No.?4?330-343?(2010).?
%?http://arxiv.org/PS_cache/arxiv/pdf/1005/1005.2908v2.pdf
%?----------------------------------------------------------------%
%?This?demo?program?only?implements?a?standard?version?of?????????%
%?Cuckoo?Search?(CS)?as?the?Levy?flights?and?generation?of???????%
%?new?solutions?may?use?slightly?different?methods.???????????????%
%?The?pseudo?code?was?given?sequentially?(select?a?cuckoo?etc)???%
%?but?the?implementation?here?uses?Matlab‘s?vector?capability????%
%?which?results?in?neater/better?codes?and?shorter?running?time.??%?
%?This?implementation?is?different?and?more?efficient?than?the????%
%?the?demo?code?provided?in?the?book?by?
%????“Yang?X.?S.?Nature-Inspired?metaheuristic?Algoirthms???????%?
%?????2nd?Edition?Luniver?Press?(2010).?????????????????“???????%
%?---------------------------------------------------------------?%

%?===============================================================?%
%?Notes:??????????????????????????????????????????????????????????%
%?Different?implementations?may?lead?to?slightly?different????????%
%?behavour?and/or?results?but?there?is?nothing?wrong?with?it????%
%?as?this?is?the?nature?of?random?walks?and?all?metaheuristics.???%
%?-----------------------------------------------------------------

function?[bestnestfmin]=cuckoo_search(n)
if?nargin<1
%?Number?of?nests?(or?different?solutions)
n=25;
end

%?Discovery?rate?of?alien?eggs/solutions
pa=0.25;

%%?Change?this?if?you?want?to?get?better?results
%?Tolerance
Tol=1.0e-5;
%%?Simple?bounds?of?the?search?domain
%?Lower?bounds
nd=15;?
Lb=-5*ones(1nd);?
%?Upper?bounds
Ub=5*ones(1nd);

%?Random?initial?solutions
for?i=1:n
nest(i:)=Lb+(Ub-Lb).*rand(size(Lb));
end

%?Get?the?current?best
fitness=10^10*ones(n1);
[fminbestnestnestfitness]=get_best_nest(nestnestfitness);

N_iter=0;
%%?Starting?iterations
while?(fmin>Tol)

????%?Generate?new?solutions?(but?keep?the?current?best)
?????new_nest=get_cuckoos(nestbestnestLbUb);???
?????[fnewbestnestfitness]=get_best_nest(nestnew_nestfitness);
????%?Update?the?counter

?屬性????????????大小?????日期????時間???名稱
-----------?---------??----------?-----??----
?????文件????????6503??2014-11-10?10:36??cuckoo_search.m

評論

共有 條評論

相關資源