資源簡介
一個工具箱,可以對經過平行視覺處理之后的圖片進行三維重建,得到視差圖。GUI操作,簡單易懂,功能強大。
代碼片段和文件信息
function?[pSmu]?=?polyfit(xyn)
%???POLYFIT?Fit?polynomial?to?data.
%???P?=?POLYFIT(XYN)?finds?the?coefficients?of?a?polynomial?P(X)?of
%???degree?N?that?fits?the?data?Y?best?in?a?least-squares?sense.?P?is?a
%???row?vector?of?length?N+1?containing?the?polynomial?coefficients?in
%???descending?powers?P(1)*X^N?+?P(2)*X^(N-1)?+...+?P(N)*X?+?P(N+1).
%
%???[PS]?=?POLYFIT(XYN)?returns?the?polynomial?coefficients?P?and?a
%???structure?S?for?use?with?POLYVAL?to?obtain?error?estimates?for
%???predictions.??S?contains?fields?for?the?triangular?factor?(R)?from?a?QR
%???decomposition?of?the?Vandermonde?matrix?of?X?the?degrees?of?freedom
%???(df)?and?the?norm?of?the?residuals?(normr).??If?the?data?Y?are?random
%???an?estimate?of?the?covariance?matrix?of?P?is?(Rinv*Rinv‘)*normr^2/df
%???where?Rinv?is?the?inverse?of?R.
%
%???[PSMU]?=?POLYFIT(XYN)?finds?the?coefficients?of?a?polynomial?in
%???XHAT?=?(X-MU(1))/MU(2)?where?MU(1)?=?MEAN(X)?and?MU(2)?=?STD(X).?This
%???centering?and?scaling?transformation?improves?the?numerical?properties
%???of?both?the?polynomial?and?the?fitting?algorithm.
%
%???Warning?messages?result?if?N?is?>=?length(X)?if?X?has?repeated?or
%???nearly?repeated?points?or?if?X?might?need?centering?and?scaling.
%
%???Class?support?for?inputs?XY:
%??????float:?double?single
%
%???See?also?POLY?POLYVAL?ROOTS.
%???Copyright?1984-2005?The?MathWorks?Inc.
%???$Revision:?5.17.4.8?$??$Date:?2006/06/20?20:11:56?$
%?The?regression?problem?is?formulated?in?matrix?format?as:
%
%????y?=?V*p????or
%
%??????????3??2
%????y?=?[x??x??x??1]?[p3
%??????????????????????p2
%??????????????????????p1
%??????????????????????p0]
%
%?where?the?vector?p?contains?the?coefficients?to?be?found.??For?a
%?7th?order?polynomial?matrix?V?would?be:
%
%?V?=?[x.^7?x.^6?x.^5?x.^4?x.^3?x.^2?x?ones(size(x))];
if?~isequal(size(x)size(y))
????error(‘MATLAB:polyfit:XYSizeMismatch‘...
??????????‘X?and?Y?vectors?must?be?the?same?size.‘)
end
x?=?x(:);
y?=?y(:);
if?nargout?>?2
???mu?=?[mean(x);?std(x)];
???x?=?(x?-?mu(1))/mu(2);
end
%?Construct?Vandermonde?matrix.
V(:n+1)?=?ones(length(x)1class(x));
for?j?=?n:-1:1
???V(:j)?=?x.*V(:j+1);
end
%?Solve?least?squares?problem.
[QR]?=?qr(V0);
p?=?R\(Q‘*y);????%?Same?as?p?=?V\y;
r?=?y?-?V*p;
p?=?p.‘;??????????%?Polynomial?coefficients?are?row?vectors?by?convention.
%?S?is?a?structure?containing?three?elements:?the?triangular?factor?from?a
%?QR?decomposition?of?the?Vandermonde?matrix?the?degrees?of?freedom?and
%?the?norm?of?the?residuals.
S.R?=?R;
S.df?=?max(0length(y)?-?(n+1));
S.normr?=?norm(r);
?屬性????????????大小?????日期????時間???名稱
-----------?---------??----------?-----??----
?????文件????????4589??2012-09-14?14:41??Stereo%20Matching.prj
?????文件??????342036??2012-09-14?14:41??left1.png
?????文件??????182317??2012-09-14?14:41??left2.png
?????文件??????362946??2012-09-14?14:41??left3.png
?????文件??????307325??2012-09-14?14:41??left4.png
?????文件????????1333??2012-09-14?14:41??license.txt
?????文件????????2659??2012-09-14?14:41??polyfit2.m
?????文件??????343316??2012-09-14?14:41??right1.png
?????文件??????181900??2012-09-14?14:41??right2.png
?????文件??????364420??2012-09-14?14:41??right3.png
?????文件??????307609??2012-09-14?14:41??right4.png
?????文件???????69692??2012-09-14?14:41??screenstereoGUI.jpg
?????文件????????2924??2012-09-14?14:41??stereomatch.m
?????文件????????5986??2012-09-14?14:41??stereovision.fig
?????文件???????14596??2012-09-14?14:41??stereovision.m
?????文件????????7618??2012-09-14?14:41??stereovisionplus.fig
?????文件???????21997??2012-09-14?14:41??stereovisionplus.m
?????文件????????2809??2012-09-14?14:41??me
?????文件???????69692??2012-09-14?14:41??me
?????文件????????1665??2012-09-14?14:41??me
?????文件????????2502??2012-09-14?14:41??.me
?????文件????????1192??2012-09-14?14:41??[Content_Types].xm
?????文件?????????894??2012-09-14?14:41??_rels\.rels
- 上一篇:圖像處理
- 下一篇:簡單的Matlab人臉識別
評論
共有 條評論