資源簡介
This article describes a R package Boruta, implementing a novel feature selection
algorithm for nding all relevant variables. The algorithm is designed as a wrapper around
a Random Forest classication algorithm. It iteratively removes the features which are
proved by a statistical test to be less relevant than random probes. The Boruta package
provides a convenient interface to the algorithm. The short description of the algorithm
and examples of its application are presented.
本文介紹了一個R包Boruta,實現了一種尋找所有相關變量的新特征選擇算法。 該算法被設計為包裝器隨機森林分類算法。 它迭代地刪除了那些通過統計檢驗證明與隨機探針不太相關特征。 Boruta包為算法提供了方便的接口。本文是對 算法的簡短描述并介紹了其應用實例。
代碼片段和文件信息
- 上一篇:FCN模型實現圖像分割配套資料分享.txt
- 下一篇:山東大學軟件測試實驗報告
評論
共有 條評論