資源簡(jiǎn)介
3f43610efc41412ee54a01d2fed70e5b.rar

代碼片段和文件信息
clc
clear
close?all
load?leafname.mat;???%載入光譜數(shù)據(jù),一行代表一個(gè)樣本
matrix?=?leafspectral_matrixZT;???????%?將載入的光譜數(shù)據(jù)賦給matrix???
leafmsc?=?msc(matrix);????????????????%?對(duì)光譜數(shù)據(jù)進(jìn)行msc多元散射校正
%%???????????????????????????????繪制圖像進(jìn)行對(duì)比?msc前后的對(duì)比
plot(leafmsc‘)
figure(2)
plot(matrix‘)
leafmsc?=?leafmsc‘;
%%???????????????????????????????進(jìn)行?sgolya平滑?和SG-1階平滑
N?=?input(‘請(qǐng)輸入擬合次數(shù)‘);????%?設(shè)置SG濾波器中多項(xiàng)式的階數(shù)
F?=?input(‘設(shè)置窗口參數(shù)(奇數(shù))‘);???%?設(shè)置SG濾波器中框架的邊長(zhǎng)
%%
[bg]=sgolay(NF);?????????????%?sgolay濾波器函數(shù)調(diào)用
???????????????????????????????%?b的維度是F*F的.b的每一行代表一個(gè)濾波器的系數(shù)。中間那行用于穩(wěn)態(tài)數(shù)據(jù)的平滑,
???????????????????????????????%b中間那行的前面所有行代表信號(hào)的末端數(shù)據(jù),
???????????????????????????????%后面所有行代表信號(hào)起始階段的數(shù)據(jù)。
[m?n]?=?size(leafmsc)
%%???使用b中數(shù)據(jù)進(jìn)行SG平滑
figure(3)
for?i?=?1:n
????ycenter?=?conv(leafmsc(:i)b((F+1)/2:)‘valid‘);????%?求穩(wěn)態(tài)數(shù)據(jù)的平滑結(jié)果
????ybegin?=?b(end:-1:(F+3)/2:)?*?leafmsc(F:-1:1i);???%?求初始階段數(shù)據(jù)的平滑結(jié)果(b和intensity的數(shù)據(jù)是矩陣想乘的關(guān)系,但要注意二者數(shù)據(jù)的順序進(jìn)行了顛倒)
????yend?=?b((F-1)/2:-1:1:)?*?leafmsc(end:-1:end-(F-1)i);??%?求末階段段數(shù)據(jù)的平滑結(jié)果(b和intensity的數(shù)據(jù)是矩陣想乘的關(guān)系,但要注意二者數(shù)據(jù)的順序進(jìn)行了顛倒)
????Y?=?[ybegin;ycenter;yend];
????plot(Y)
????hold?on;????
end
%%?使用g中數(shù)據(jù)進(jìn)行SG平滑。g中數(shù)據(jù)代表不同階的SG平滑效果。第一列代表0階,第二列代表1階.....
figure(4)?????%?繪制SG_2階的數(shù)據(jù)
for?j?=?1:n
???dy?=?zeros(m4);
???for?p?=?0:3
???????dy(:p+1)?=?conv(leafmsc(:j)?factorial(p)/(-4.44)^p?*?g(:p+1)?‘same‘);??%?g(:1):平滑系數(shù),g(:2):一階導(dǎo)數(shù)系數(shù)。利用求導(dǎo)的方法求解系數(shù),式中/(4.44)^p
???end
????
????plot(dy(:2));????%?改變??dy(:value)中的value可以畫出不同階數(shù)的SG平滑,1代表0階,2代表1階
????hold?on
end
?
?屬性????????????大小?????日期????時(shí)間???名稱
-----------?---------??----------?-----??----
?????文件???????1859??2018-09-01?10:08??spectralmatrix_msc_sgolay.m
-----------?---------??----------?-----??----
?????????????????1859????????????????????1
評(píng)論
共有 條評(píng)論