91av视频/亚洲h视频/操亚洲美女/外国一级黄色毛片 - 国产三级三级三级三级

  • 大小: 119KB
    文件類型: .zip
    金幣: 2
    下載: 0 次
    發(fā)布日期: 2021-06-01
  • 語言: 其他
  • 標(biāo)簽: Graph??Proces??GPF??

資源簡介

# GPF ## 一、GPF(Graph Processing Flow):利用圖神經(jīng)網(wǎng)絡(luò)處理問題的一般化流程 1、圖節(jié)點(diǎn)預(yù)表示:利用NE框架,直接獲得全圖每個節(jié)點(diǎn)的Embedding; 2、正負(fù)樣本采樣:(1)單節(jié)點(diǎn)樣本;(2)節(jié)點(diǎn)對樣本; 3、抽取封閉子圖:可做類化處理,建立一種通用圖數(shù)據(jù)結(jié)構(gòu); 4、子圖特征融合:預(yù)表示、節(jié)點(diǎn)特征、全局特征、邊特征; 5、網(wǎng)絡(luò)配置:可以是圖輸入、圖輸出的網(wǎng)絡(luò);也可以是圖輸入,分類/聚類結(jié)果輸出的網(wǎng)絡(luò); 6、訓(xùn)練和測試; ## 二、主要文件: 1、graph.py:讀入圖數(shù)據(jù); 2、embeddings.py:預(yù)表示學(xué)習(xí); 3、sample.py:采樣; 4、subgraphs.py/s2vGraph.py:抽取子圖; 5、batchgraph.py:子圖特征融合; 6、classifier.py:網(wǎng)絡(luò)配置; 7、parameters.py/until.py:參數(shù)配置/幫助文件; ## 三、使用 1、在parameters.py中配置相關(guān)參數(shù)(可默認(rèn)); 2、在example/文件夾中運(yùn)行相應(yīng)的案例文件--包括鏈接預(yù)測、節(jié)點(diǎn)狀態(tài)預(yù)測; 以鏈接預(yù)測為例: ### 1、導(dǎo)入配置參數(shù) ```from parameters import parser, cmd_embed, cmd_opt``` ### 2、參數(shù)轉(zhuǎn)換 ``` args = parser.parse_args() args.cuda = not args.noCuda and torch.cuda.is_available() torch.manual_seed(args.seed) if args.cuda: torch.cuda.manual_seed(args.seed) if args.hop != 'auto': args.hop = int(args.hop) if args.maxNodesPerHop is not None: args.maxNodesPerHop = int(args.maxNodesPerHop) ``` ### 3、讀取數(shù)據(jù) ``` g = graph.Graph() g.read_edgelist(filename=args.dataName, weighted=args.weighted, directed=args.directed) g.read_node_status(filename=args.labelName) ``` ### 4、獲取全圖節(jié)點(diǎn)的Embedding ``` embed_args = cmd_embed.parse_args() embeddings = embeddings.learn_embeddings(g, embed_args) node_information = embeddings #print node_information ``` ### 5、正負(fù)節(jié)點(diǎn)采樣 ``` train, train_status, test, test_status = sample.sample_single(g, args.testRatio, max_train_num=args.maxTrainNum) ``` ### 6、抽取節(jié)點(diǎn)對的封閉子圖 ``` net = until.nxG_to_mat(g) #print net train_graphs, test_graphs, max_n_label = subgraphs.singleSubgraphs(net, train, train_status, test, test_status, args.hop, args.maxNodesPerHop, node_information) print('# train: %d, # test: %d' % (len(train_graphs), len(test_graphs))) ``` ### 7、加載網(wǎng)絡(luò)模型,并在classifier中配置相關(guān)參數(shù) ``` cmd_args = cmd_opt.parse_args() cmd_args.feat_dim = max_n_label + 1 cmd_args.attr_dim = node_information.shape[1] cmd_args.latent_dim = [int(x) for x in cmd_args.latent_dim.split('-')] if len(cmd_args.latent_dim)

資源截圖

代碼片段和文件信息

#!/usr/bin/env?python
#?encoding:?utf-8

import?sys
#指定路徑
sys.path.append(“../src/“)?

import?graph
import?embeddings
import?sample
import?classifier
from?classifier?import?loop_dataset
import?subgraphs
import?argparse
import?torch
import?torch.optim?as?optim
import?networkx?as?nx
import?until
import?random
from?tqdm?import?tqdm



#導(dǎo)入配置參數(shù)
from?parameters?import?parser?cmd_embed?cmd_opt

#參數(shù)轉(zhuǎn)換
args?=?parser.parse_args()
args.cuda?=?not?args.noCuda?and?torch.cuda.is_available()
torch.manual_seed(args.seed)
if?args.cuda:
????torch.cuda.manual_seed(args.seed)
if?args.hop?!=?‘a(chǎn)uto‘:
????args.hop?=?int(args.hop)
if?args.maxNodesPerHop?is?not?None:
????args.maxNodesPerHop?=?int(args.maxNodesPerHop)

#讀取數(shù)據(jù)
g?=?graph.Graph()
g.read_edgelist(filename=args.dataName?weighted=args.weighted?directed=args.directed)
g.read_node_status(filename=args.labelName)

#獲取全圖節(jié)點(diǎn)的embedding
embed_args?=?cmd_embed.parse_args()?
embeddings?=?embeddings.learn_embeddings(g?embed_args)
node_information?=?embeddings
#print?node_information?
#正負(fù)節(jié)點(diǎn)對采樣
train?train_status?test?test_status?=?sample.sample_single(g?args.testRatio?max_train_num=args.maxTrainNum)

#抽取節(jié)點(diǎn)對的封閉子圖
net?=?until.nxG_to_mat(g)
#print?net
train_graphs?test_graphs?max_n_label?=?subgraphs.singleSubgraphs(net?train?train_status?test?test_status?args.hop?args.maxNodesPerHop?node_information)
print(‘#?train:?%d?#?test:?%d‘?%?(len(train_graphs)?len(test_graphs)))

#加載網(wǎng)絡(luò)模型,并在classifier中配置相關(guān)參數(shù)
cmd_args?=?cmd_opt.parse_args()
cmd_args.feat_dim?=?max_n_label?+?1
cmd_args.attr_dim?=?node_information.shape[1]
cmd_args.latent_dim?=?[int(x)?for?x?in?cmd_args.latent_dim.split(‘-‘)]
if?len(cmd_args.latent_dim)?==?1:
????cmd_args.latent_dim?=?cmd_args.latent_dim[0]
model?=?classifier.Classifier(cmd_args)
optimizer?=?optim.Adam(model.parameters()?lr=args.learningRate)

#訓(xùn)練和測試
train_idxes?=?list(range(len(train_graphs)))
best_loss?=?None
for?epoch?in?range(args.num_epochs):
????random.shuffle(train_idxes)
????
????model.train()
????avg_loss?=?loop_dataset(train_graphs?model?train_idxes?cmd_args.batch_size?optimizer=optimizer)
????print(‘\033[92maverage?training?of?epoch?%d:?loss?%.5f?acc?%.5f?auc?%.5f\033[0m‘?%?(epoch?avg_loss[0]?avg_loss[1]?avg_loss[2]))

????model.eval()
????test_loss?=?loop_dataset(test_graphs?model?list(range(len(test_graphs)))?cmd_args.batch_size)
????print(‘\033[93maverage?test?of?epoch?%d:?loss?%.5f?acc?%.5f?auc?%.5f\033[0m‘?%?(epoch?test_loss[0]?test_loss[1]?test_loss[2]))








?屬性????????????大小?????日期????時間???名稱
-----------?---------??----------?-----??----
?????目錄???????????0??2018-11-04?04:46??GPF-master\
?????文件????????1203??2018-11-04?04:46??GPF-master\.gitignore
?????目錄???????????0??2018-11-04?04:46??GPF-master\GPF\
?????目錄???????????0??2018-11-04?04:46??GPF-master\GPF\GraphNet\
?????文件????????5812??2018-11-04?04:46??GPF-master\GPF\GraphNet\DGCNN.py
?????文件???????????0??2018-11-04?04:46??GPF-master\GPF\GraphNet\__init__.py
?????文件????????2217??2018-11-04?04:46??GPF-master\GPF\GraphNet\gat.py
?????文件????????3700??2018-11-04?04:46??GPF-master\GPF\GraphNet\gat_layers.py
?????文件????????1879??2018-11-04?04:46??GPF-master\GPF\GraphNet\gcn.py
?????文件????????1249??2018-11-04?04:46??GPF-master\GPF\GraphNet\gcn_layers.py
?????文件????????1985??2018-11-04?04:46??GPF-master\GPF\GraphNet\mlp_dropout.py
?????文件????????2701??2018-11-04?04:46??GPF-master\GPF\GraphNet\pscn.py
?????文件????????1850??2018-11-04?04:46??GPF-master\GPF\GraphNet\pytorch_util.py
?????文件????????6324??2018-11-04?04:46??GPF-master\GPF\GraphNet\s2v_lib.py
?????目錄???????????0??2018-11-04?04:46??GPF-master\GPF\GraphNet\s2v_lib\
?????文件?????????825??2018-11-04?04:46??GPF-master\GPF\GraphNet\s2v_lib\Makefile
?????目錄???????????0??2018-11-04?04:46??GPF-master\GPF\GraphNet\s2v_lib\build\
?????目錄???????????0??2018-11-04?04:46??GPF-master\GPF\GraphNet\s2v_lib\build\dll\
?????文件?????????160??2018-11-04?04:46??GPF-master\GPF\GraphNet\s2v_lib\build\dll\libs2v.d
?????文件???????33238??2018-11-04?04:46??GPF-master\GPF\GraphNet\s2v_lib\build\dll\libs2v.so
?????目錄???????????0??2018-11-04?04:46??GPF-master\GPF\GraphNet\s2v_lib\build\lib\
?????文件??????????56??2018-11-04?04:46??GPF-master\GPF\GraphNet\s2v_lib\build\lib\config.d
?????文件????????2096??2018-11-04?04:46??GPF-master\GPF\GraphNet\s2v_lib\build\lib\config.o
?????文件??????????74??2018-11-04?04:46??GPF-master\GPF\GraphNet\s2v_lib\build\lib\graph_struct.d
?????文件???????15416??2018-11-04?04:46??GPF-master\GPF\GraphNet\s2v_lib\build\lib\graph_struct.o
?????文件?????????105??2018-11-04?04:46??GPF-master\GPF\GraphNet\s2v_lib\build\lib\msg_pass.d
?????文件????????9088??2018-11-04?04:46??GPF-master\GPF\GraphNet\s2v_lib\build\lib\msg_pass.o
?????文件????????4855??2018-11-04?04:46??GPF-master\GPF\GraphNet\s2v_lib\embedding.py
?????目錄???????????0??2018-11-04?04:46??GPF-master\GPF\GraphNet\s2v_lib\include\
?????文件?????????657??2018-11-04?04:46??GPF-master\GPF\GraphNet\s2v_lib\include\config.h
?????文件????????2666??2018-11-04?04:46??GPF-master\GPF\GraphNet\s2v_lib\include\graph_struct.h
............此處省略64個文件信息

評論

共有 條評論