資源簡介
機器學習中常用的流行學習算法,對于算法中的各個量都有明確的解釋。

代碼片段和文件信息
function?r=LFDA(XYrmetrickNN)
%
%?Local?Fisher?Discriminant?Analysis?for?Supervised?Dimensionality?Reduction
%
%?Usage:
%???????[TZ]=LFDA(XYrmetric)
%
%?Input:
%????X:??????d?x?n?matrix?of?original?samples
%????????????d?---?dimensionality?of?original?samples
%????????????n?---?the?number?of?samples?
%????Y:??????n?dimensional?vector?of?class?labels
%????r:??????dimensionality?of?reduced?space?(default:?d)
%????metric:?type?of?metric?in?the?embedding?space?(default:?‘weighted‘)
%????????????‘weighted‘????????---?weighted?eigenvectors?
%????????????‘orthonormalized‘?---?orthonormalized
%????????????‘plain‘???????????---?raw?eigenvectors
%????kNN:????parameter?used?in?local?scaling?method?(default:?7)
%
%?Output:
%????T:?d?x?r?transformation?matrix?(Z=T‘*X)
%????Z:?r?x?n?matrix?of?dimensionality?reduced?samples?
%
%?(c)?Masashi?Sugiyama?Department?of?Compter?Science?Tokyo?Institute?of?Technology?Japan.
%?????sugi@cs.titech.ac.jp?????http://sugiyama-www.cs.titech.ac.jp/~sugi/software/LFDA/
if?nargin<2
??error(‘Not?enough?input?arguments.‘)
end
[d?n]=size(X);
if?nargin<3
??r=d;
end
if?nargin<4
??metric=‘weighted‘;
end
if?nargin<5
??kNN=17;
end
tSb=zeros(dd);
tSw=zeros(dd);
for?c=unique(Y)
??Xc=X(:Y==c);
??nc=size(Xc2);
??%?Define?classwise?affinity?matrix
??Xc2=sum(Xc.^21);
??distance2=repmat(Xc2nc1)+repmat(Xc2‘1nc)-2*Xc‘*Xc;
??[sortedindex]=sort(distance2);
??kNNdist2=sorted(kNN+1:);
??sigma=sqrt(kNNdist2);
??localscale=sigma‘*sigma;
??flag=(localscale~=0);
??A=zeros(ncnc);
??A(flag)=exp(-distance2(flag)./localscale(flag));
??Xc1=sum(Xc2);
??G=Xc*(repmat(sum(A2)[1?d]).*Xc‘)-Xc*A*Xc‘;
??tSb=tSb+G/n+Xc*Xc‘*(1-nc/n)+Xc1*Xc1‘/n;
??tSw=tSw+G/nc;
end
X1=sum(X2);
tSb=tSb-X1*X1‘/n-tSw;
tSb=(tSb+tSb‘)/2;
tSw=(tSw+tSw‘)/2;
aer=sum(tSb);
ber=sum(tSw);
r=aer./ber;
r=r./20;
?屬性????????????大小?????日期????時間???名稱
-----------?---------??----------?-----??----
?????文件???????1907??2015-04-02?20:08??LFDA.m
-----------?---------??----------?-----??----
?????????????????1907????????????????????1
- 上一篇:weui案例.zip
- 下一篇:門禁系統設計
評論
共有 條評論