資源簡介
該程序介紹了詳細的TV正則化方法在數學反問題中的應用,可以幫助大家更好的理解TV方法的原理和實現方法。

代碼片段和文件信息
clear
%load?ballistic?observation?data
load?Ballistic_observation_data
t=Ballistic_observation_data(:1);
y=Ballistic_observation_data(:2);
%use?all?data?N=20
N?=?length(t);
t=t(1:N);
y=y(1:N);
%build?the?parabolic?system?matrix
G?=?[?ones(N1)??t??-1/2*t.*t?];
b?=?y
A?=?G
m=size(A1)
n=size(A2)?%?M?should?larger?than?N
%get?the?singular?values
[usv]=svd(A)
%set?regularization?parameters
lambda=zeros(11000)
for?i=1:1000
????lambda(1i)=10^(-5+10*i/1000)
end
ll=size(lambda2);
x_lambda?=?zeros(nll);
rho?=?zeros(1ll);?
eta?=?zeros(1ll);
k=zeros(1ll);
%calculate?residual?norm?and?solution?norm
for?i=1:ll
????etaderi=0;
????for?j=1:n
????????beta(j1)=u(:j)‘*b;
????????f(j)=s(jj)^2/(s(jj)^2+lambda(1i)^2);
????????xi(j1)=beta(j1)/s(jj);
???????xx(j1)=beta(j1)*f(j)/s(jj);
????end
?????etaderi=etaderi*(-4)/lambda(1i);
?????x_lambda(:i)=v*xx;
????eta1(1i)=norm(x_lambda(:i));
????rho1(1i)=norm(A*x_lambda(:i)-b);
????eta(1i)=eta1(1i)^2;
????rho(1i)=rho1(1i)^2;
end
%calculate??curvatue
k?=?lcfun(lambdadiag(s)betaxi)
%plot?L-curve?and?curvature
figure(1)
subplot(121)
loglog(rho1eta1);
title(‘L-curve‘)
xlabel(‘Residual?norm?||Ax_\lambda-b||_2‘)
ylabel(‘Solution?norm?||x_\lambda||‘)
grid?on
subplot(122)
semilogx(lambdak)
title(‘???????????Curvature?of?the?L-curve‘)
xlabel(‘Regularization?parameter?\lambda‘)
ylabel(‘Curvature?of?the?L-curve??\kappa‘)
?屬性????????????大小?????日期????時間???名稱
-----------?---------??----------?-----??----
?????目錄???????????0??2015-03-06?19:10??Zeroth-oder-Tikhonov-regularization-master\
?????文件?????????620??2015-03-06?19:10??Zeroth-oder-Tikhonov-regularization-master\Ballistic_observation_data
?????文件????????1408??2015-03-06?19:10??Zeroth-oder-Tikhonov-regularization-master\Example01_Ballistic_path.m
?????文件????????2165??2015-03-06?19:10??Zeroth-oder-Tikhonov-regularization-master\Example02_instrument_impulse_response.m
?????文件????????1345??2015-03-06?19:10??Zeroth-oder-Tikhonov-regularization-master\Example03_shaw_problem.m
?????文件?????1221138??2015-03-06?19:10??Zeroth-oder-Tikhonov-regularization-master\Zeroth-order?Tikhonov?regularization.doc
?????文件????????1233??2015-03-06?19:10??Zeroth-oder-Tikhonov-regularization-master\lcfun.M
?????文件??????454176??2015-03-06?19:10??Zeroth-oder-Tikhonov-regularization-master\shawexamp.mat
- 上一篇:VK2C23 驅動程序
- 下一篇:h5 錄音功能的實現
評論
共有 條評論