91av视频/亚洲h视频/操亚洲美女/外国一级黄色毛片 - 国产三级三级三级三级

  • 大小: 688KB
    文件類型: .rar
    金幣: 2
    下載: 2 次
    發布日期: 2021-06-03
  • 語言: 其他
  • 標簽: PSO??CEC??

資源簡介

標準的粒子群優化算法優化、求解CEC基準測試函數,算法有詳細的注釋,算法收斂曲線圖,測試函數的代碼表達式及圖像(pdf)。

資源截圖

代碼片段和文件信息

%?常用的CEC基準測試函數

function?result?=?fitness(xD)?
?sum=0;

%?%?Sphere函數?[-100100]?min=0??(0000...)
%?for?d=1:D
%?????sum=sum+(x(d)^2);
%?end
%?result=sum;
?
%?Quartic函數??[-1.281.28]?min=0?000000
for?d=1:D
????sum=sum+d*(x(d)^4);
end?
result=sum;%+rand;

%?Schwefel‘‘s?Problem?2.22??[-1010]?00000
%?p=1;
%?for?d=1:D
%?????p=p*abs(x(d));
%?????sum=sum+abs(x(d))+p;
%?end?%?
%?result=sum;

%?Rosenbrock函數?[-3030]?min=0??(1111...)
%?for?d=1:D-1
%?????sum=sum+100*((x(d+1)-x(d)^2)^2)+(x(d)-1)^2;
%?end?
%?result=sum;

%Rastrigin函數??%[-5.125.12]?min=0?00000
%?for?d=1:D
%?????sum=sum+(x(d)^2)-10*cos(2*pi*x(d))+10;
%?end?
%?result=sum;
?
%?Griewank函數?%[-600600]?min=0?00000??X/30
%?p=0;
%?q=1;
%?for?d=1:D
%?????p=p+(x(d)^2);
%?????q=q*(cos(x(d)/sqrt(d)));
%?end?
%?sum=p/4000-q+1;
%?result=sum;

%?Ackley函數??%?[-3030]?min=0??00000
%?p=0;
%?q=0;
%?for?d=1:D
%?????p=p+x(d)^2;
%?????q=q+cos(2*pi*x(d));
%?end?
%?sum=-20*exp(-0.2*sqrt(p/D))-exp(q/D)+exp(1)+20;
%?result=sum;

%Schwefel’s?problem?2.26?[-500500]?f(420.9687)=0?這是變式
%原式f(420.9687)=-418.9829*D
%?for?d=1:D
%?????if??x(d)>500
%?????????x(d)=500;
%?????end
%?????if??x(d)<-500
%?????????x(d)=-500;
%?????end
%?????sum=sum-x(d)*sin(sqrt(abs(x(d))));
%?end?
%?result=418.9829*D+sum;

%?Generalized?Penalized?Function2?[-5050]?0??111111
%?sum1=0;?%a=5?k=100?m=4???
%?sum1=(sin(3*pi*(x(1))))^2+(x(D)-1)^2;
%?sum2=0;
%?for?d=1:D-1
%?????sum2=sum2+((x(d)-1)^2)*(1+(sin(3*pi*(x(d+1))))^2);
%?end
%?sum3=0;
%?for?d=1:D
%?????if?x(d)>5
%????????u(d)=100*(x(d)-5)^4;
%?????elseif?x(d)<-5
%????????u(d)=100*(-x(d)-5)^4;
%?????else
%????????u(d)=0;
%?????end
%?????sum3=sum3+u(d);
%?end
%?sum=0.1*(sum1+sum2)+sum3;?
%?result=sum;

%??Step函數?[-100100]?000000??
%?for?d=1:D
%?????sum=sum+(round(x(d)+0.5))^2;
%?end?
%?result=sum;

%??Schaffer函數?屋脊函數?[-100100]?min=-1?0000
%此函數在距全局最優點大約3.14范圍內存在無窮多個局部極小將其包圍,并且函數強烈振蕩
%幾種ABC算法都得到了較好的結果
%?for?d=1:D
%?????sum=sum+(x(d)^2);
%?end?
%?result=((sin(sqrt(sum)))^2-0.5)/(1+0.001*sum)^2+0.5;?%+1了,min=0

%??Schwefel‘‘s?Problem?1.2?[-100100]?00000??效果都不好
%?p=0;
%?for?d=1:D
%?????p=p+x(d);
%?????sum=sum+p^2;
%?end
%?result=sum;

%??Schwefel‘‘s?Problem?2.21?[-100100]?
%?p=abs(x(1));
%?for?d=1:D
%?????p=max(abs(x(d))p);
%?end?
%?result=p;

%??Step函數?[-100100]?000000?
%?for?d=1:D
%?????sum=sum+(round(x(d)+0.5))^2;
%?end?
%?result=sum;

%??Generalized?Penalized?Function1?[-5050]?
%?sum1=10*(sin(pi*(1+(x(1)+1)/4)))^2+((x(D)+1)/4)^2;
%?sum2=0;
%?for?d=1:D-1
%?????sum2=sum2+(((x(d)+1)/4)^2)*(1+10*(sin(pi*(1+(x(d+1)+1)/4)))^2);
%?end
%?sum3=0;
%?for?d=1:D
%?????if?x(d)>10
%????????u(d)=100*(x(d)-10)^4;
%?????elseif?x(d)<-10
%????????u(d)=100*(-x(d)-10)^4;
%?????else
%????????u(d)=0;
%?????end
%?????sum3=sum3+u(d);
%?end
%?sum=(pi*(sum1+sum2)/D)+sum3;?
%?result=sum;
end

?屬性????????????大小?????日期????時間???名稱
-----------?---------??----------?-----??----

?????文件?????876544??2017-12-13?21:38??PSO\CEC優化測試函數.pdf

?????文件???????3013??2019-04-21?14:44??PSO\fitness.m

?????文件???????2404??2019-04-21?14:43??PSO\PSO.m

?????目錄??????????0??2019-04-21?14:44??PSO

-----------?---------??----------?-----??----

???????????????881961????????????????????4


評論

共有 條評論