91av视频/亚洲h视频/操亚洲美女/外国一级黄色毛片 - 国产三级三级三级三级

  • 大小: 40KB
    文件類型: .zip
    金幣: 2
    下載: 0 次
    發布日期: 2021-06-06
  • 語言: 其他
  • 標簽: 數據集??

資源簡介

Kaggle平臺泰坦尼克號數據集+源代碼+注釋

資源截圖

代碼片段和文件信息

import?numpy?as?np
import?pandas?as?pd
import?tensorflow?as?tf
from?sklearn.model_selection?import?train_test_split

################################
#?Preparing?Data
################################

#?read?data?from?file
data?=?pd.read_csv(‘train.csv‘)

#?fill?nan?values?with?0
data?=?data.fillna(0)
#?convert?[‘male‘?‘female‘]?values?of?Sex?to?[1?0]
data[‘Sex‘]?=?data[‘Sex‘].apply(lambda?s:?1?if?s?==?‘male‘?else?0)
#?‘Survived‘?is?the?label?of?one?class
#?add?‘Deceased‘?as?the?other?class
data[‘Deceased‘]?=?data[‘Survived‘].apply(lambda?s:?1?-?s)

#?select?features?and?labels?for?training
dataset_X?=?data[[‘Sex‘?‘Age‘?‘Pclass‘?‘SibSp‘?‘Parch‘?‘Fare‘]].as_matrix()
dataset_Y?=?data[[‘Deceased‘?‘Survived‘]].as_matrix()

#?split?training?data?and?validation?set?data
X_train?X_val?y_train?y_val?=?train_test_split(dataset_X?dataset_Y
??????????????????????????????????????????????????test_size=0.2
??????????????????????????????????????????????????random_state=42)

################################
#?Constructing?Dataflow?Graph
################################

#?create?symbolic?variables
X?=?tf.placeholder(tf.float32?shape=[None?6])
y?=?tf.placeholder(tf.float32?shape=[None?2])

#?weights?and?bias?are?the?variables?to?be?trained
weights?=?tf.Variable(tf.random_normal([6?2])?name=‘weights‘)
bias?=?tf.Variable(tf.zeros([2])?name=‘bias‘)
y_pred?=?tf.nn.softmax(tf.matmul(X?weights)?+?bias)

#?Minimise?cost?using?cross?entropy
#?NOTE:?add?a?epsilon(1e-10)?when?calculate?log(y_pred)
#?otherwise?the?result?will?be?-inf
cross_entropy?=?-?tf.reduce_sum(y?*?tf.log(y_pred?+?1e-10)
????????????????????????????????reduction_indices=1)
cost?=?tf.reduce_mean(cross_entropy)

#?use?gradient?descent?optimizer?to?minimize?cost
train_op?=?tf.train.GradientDescentOptimizer(0.001).minimize(cost)

#?calculate?accuracy
correct_pred?=?tf.equal(tf.argmax(y?1)?tf.argmax(y_pred?1))
acc_op?=?tf.reduce_mean(tf.cast(correct_pred?tf.float32))

################################
#?Training?and?Evaluating?the?model
################################

#?use?session?to?run?the?calculation
with?tf.Session()?as?sess:
????#?variables?have?to?be?initialized?at?the?first?place
????tf.global_variables_initializer().run()

????#?training?loop
????for?epoch?in?range(10):
????????total_loss?=?0.
????????for?i?in?range(len(X_train)):
????????????#?prepare?feed?data?and?run
????????????feed_dict?=?{X:?[X_train[i]]?y:?[y_train[i]]}
????????????#?print(“x_train“)
????????????#print(X_train[i])
????????????_?loss?=?sess.run([train_op?cost]?feed_dict=feed_dict)
????????????print(“number:“+str(i))
????????????print(sess.run(y_predfeed_dict=feed_dict))
????????????total_loss?+=?loss
????????#?display?loss?per?epoch
????????#print(‘Epoch:?%04d?total?loss=%.9f‘?%?(epoch?+?1?total_loss))

????#?Accuracy?calculated?by?TensorFlow
????accuracy?=?sess.run(acc_op?feed_dict={X:?X_val?y:?y_val})
????

?屬性????????????大小?????日期????時間???名稱
-----------?---------??----------?-----??----
?????文件???????26694??2018-04-27?11:42??Titannic\Taitan_onehot.csv
?????文件????????3914??2018-04-27?12:41??Titannic\example1.py
?????文件????????5864??2018-04-25?22:00??Titannic\example2.py
?????文件????????3258??2018-04-25?16:32??Titannic\gender_submission.csv
?????文件???????28629??2018-04-25?16:32??Titannic\test.csv
?????文件???????61194??2018-04-25?16:32??Titannic\train.csv
?????目錄???????????0??2018-04-27?13:18??Titannic\

評論

共有 條評論