資源簡介
利用Mosek優化工具實現SVM二分類性能,并在公共數據集Banana上實現,直觀顯示分類結果

代碼片段和文件信息
%?SVMTRAIN?-?Trains?a?support?vector?machine?incrementally
%????????????using?the?L1?soft?margin?approach?developed?by
%????????????Cauwenberghs?for?two-class?problems.
%
%?Syntax:?[abginduindX_mery_merRsQ]?=?svmtrain(XyCtypescale)
%?????????[abginduindX_mery_merRsQ]?=?svmtrain(XyCtypescaleuind)
%?????????(trains?a?new?SVM?on?the?given?examples)
%
%?????????[abginduindX_mery_merRsQ]?=?svmtrain(XyC)
%?????????[abginduindX_mery_marRsQ]?=?svmtrain(XyCuind)
%?????????(trains?the?current?SVM?in?memory?on?the?given?examples)
%
%??????a:?alpha?coefficients
%??????b:?bias
%??????g:?partial?derivatives?of?cost?function?w.r.t.?alpha?coefficients
%????ind:?cell?array?containing?indices?of?margin?error?and?reserve?vectors
%?????????ind{1}:?indices?of?margin?vectors
%?????????ind{2}:?indices?of?error?vectors
%?????????ind{3}:?indices?of?reserve?vectors
%???uind:?column?vector?of?user-defined?example?indices?(used?for?unlearning?specified?examples)
%??X_mer:?matrix?of?margin?error?and?reserve?vectors?stored?columnwise
%??y_mer:?column?vector?of?class?labels?(-1/+1)?for?margin?error?and?reserve?vectors
%?????Rs:?inverse?of?extended?kernel?matrix?for?margin?vectors
%??????Q:?extended?kernel?matrix?for?all?vectors
%??????X:?matrix?of?training?vectors?stored?columnwise
%??????y:?column?vector?of?class?labels?(-1/+1)?for?training?vectors
%??????C:?soft-margin?regularization?parameter(s)
%?????????dimensionality?of?C???????assumption
%?????????1-dimensional?vector??????universal?regularization?parameter
%?????????2-dimensional?vector??????class-conditional?regularization?parameters?(-1/+1)
%?????????n-dimensional?vector??????regularization?parameter?per?example
%?????????(where?n?=?#?of?examples)
%???type:?kernel?type
%???????????1:?linear?kernel????????K(xy)?=?x‘*y
%?????????2-4:?polynomial?kernel????K(xy)?=?(scale*x‘*y?+?1)^type
%???????????5:?Gaussian?kernel?with?variance?1/(2*scale)
%??scale:?kernel?scale
%
%?Version?3.22e?--?Comments?to?diehl@alumni.cmu.edu
%
clc;
clear;
close?all
%?function?[abginduindXyRsQ]?=?svmtrain(X_newy_newC_newvarargin)
load?banana
x?=?banana;
N?=?200;
X_new?=?x‘;
y_new=[ones(N1);-ones(N1)];
%%?plot?all?examples
figure;
T.X?=?x‘;
T.y?=?y_new;
ppatterns(T)
%?index?=?[1:100?201:300]
%?T.X?=?x‘;
%?T.y?=?y_new;
%?ppatterns(T)
%?V1=axis;axis(1.2*V1)
%?%獲得增加部分樣本
index1=find((x(1:2002)<=0)&(x(1:2001)<=0));%
in1?=?setdiff(1:200index1);
index2=find((x(201:4002)<=0)&(x(201:4001)>=-1));
index2?=?index2+N*ones(size(index21)1);
in2?=?setdiff(201:400index2);
addx1?=?x(index1:);
addx2?=?x(index2:);
addindex?=?[index1‘index2‘];
?
??in?=?[in1?in2]‘;
??x_ini?=?x(in:);
??y_ini?=?y_new(in);
??
??
??
%?flags?for?example?state
MARGIN????=?1;
ERROR?????=?2;
RESERVE???=?3;
UNLEARNED?=?4;
new_model?=?1;?
C_new?=?2;
uind_new?=?zeros(size(y_new));
type_new?=?5;?
%???????????1:?linear?kernel????
?屬性????????????大小?????日期????時間???名稱
-----------?---------??----------?-----??----
?????文件????????7049??2018-09-20?22:58??GY_SVM_Mosek.m
?????文件????????3399??2018-01-19?10:04??plot_svm2.m
?????文件????????2635??2018-01-03?23:55??svm_online.m
評論
共有 條評論