資源簡介
傳統的去噪方法往往假設含噪圖像的有用信息處在低頻區域,而噪聲信息處在高頻區域,從而基于中值濾波、Wiener 濾波、小波變換等方法實現圖像去噪,而實際上這種假設并不總是成立的?;趫D像的稀疏表示,近幾年來研究者們提出了基于過完備字典稀疏表示的圖像去噪模型,其基本原理是將圖像的稀疏表示作為有用信息,將逼近殘差視為噪聲。利用 K-SVD 算法求得基于稀疏和冗余的訓練字典,同時針對 K-SVD 算法僅適合處理小規模數據的局限,通過定義全局最優來強制圖像局部塊的稀疏性。文獻[28]提出了稀疏性正則化的圖像泊松去噪算法,該算法采用 log 的泊松似然函數作為保真項,用圖像在冗余字典下稀疏性約束作為正則項,從而取得更好的去噪效果。

代碼片段和文件信息
%--------------Brief?description-------------------------------------------
%
%?This?demo?implements?Low-rank?decomposition?for?image?destriping
%?Note?that?the?input?stripe?should?be?vertical.
%?More?details?in:
%?Y.?Chang?et?al.?Remote?Sensing?Image?Stripe?Noise?Removal:?From?Image?
%?Decomposition?Perspective.?IEEE?TGRS.
%
%?contact:?owuchangyuo@gmail.com
clear?all;?
close?all;
clc;
addpath(genpath(‘Images\‘));
addpath(genpath(‘Codes\‘));
%%?read?images
[filename?filepath?FilterIndex?]?=?uigetfile(‘Images/*.*‘‘Read?image‘);
I?=??double(imread(fullfile(filepathfilename)))?;
%%?Degraded?simulation
Perio?=?10;
rate?=?0.5;
mean?=?0;
%?Is???=??Periodical_Simulated(IPerioratemean);
Is???=??NonPeriodical_Simulated(Iratemean);
%%?initialization
[opts]?=?ParSet;????????????%?for?single?image
%?[opts]?=?MParSet;?????????%?for?multi-images
%%?主程序
tic
[U?S]?=?SILR_destripe(Is/255opts);
%?[US]?=?MILR_destripe(Is/256opts);
toc?
figureimshow(I[])
figureimshow(Is[])
figureimshow(U[])
figureimshow(S[])
?屬性????????????大小?????日期????時間???名稱
-----------?---------??----------?-----??----
?????目錄???????????0??2017-03-14?19:51??稀疏分解圖像去噪\
?????目錄???????????0??2017-03-14?19:51??稀疏分解圖像去噪\Codes\
?????文件????????1983??2016-09-21?11:27??稀疏分解圖像去噪\Codes\MILR_destripe.m
?????文件?????????547??2016-09-21?12:16??稀疏分解圖像去噪\Codes\MParSet.m
?????文件?????????381??2015-12-19?13:05??稀疏分解圖像去噪\Codes\NonPeriodical_Simulated.m
?????文件?????????469??2016-09-21?12:24??稀疏分解圖像去噪\Codes\ParSet.m
?????文件?????????510??2015-12-19?12:59??稀疏分解圖像去噪\Codes\Periodical_Simulated.m
?????文件????????2046??2016-07-21?18:17??稀疏分解圖像去噪\Codes\SILR_destripe.m
?????文件?????????927??2016-07-21?16:17??稀疏分解圖像去噪\Codes\SVD_shrink.m
?????目錄???????????0??2017-03-14?19:51??稀疏分解圖像去噪\Codes\Utilize\
?????目錄???????????0??2017-03-14?19:51??稀疏分解圖像去噪\Codes\Utilize\Moment?Matching\
?????文件?????????185??2011-08-08?10:54??稀疏分解圖像去噪\Codes\Utilize\Moment?Matching\MeanDN.m
?????文件????????1887??2015-12-08?13:45??稀疏分解圖像去噪\Codes\Utilize\Moment?Matching\Moment_matching.m
?????目錄???????????0??2017-03-14?19:51??稀疏分解圖像去噪\Codes\Utilize\SGE\
?????文件????????1345??2016-05-30?11:50??稀疏分解圖像去噪\Codes\Utilize\SGE\SGE_Demo.m
?????文件?????????731??2016-05-31?09:39??稀疏分解圖像去噪\Codes\Utilize\SGE\SGEdestripe.m
?????目錄???????????0??2017-03-14?19:51??稀疏分解圖像去噪\Codes\Utilize\TV\
?????文件?????????659??2015-12-08?13:55??稀疏分解圖像去噪\Codes\Utilize\TV\TV_Demon.m
?????文件????????1903??2015-12-08?13:26??稀疏分解圖像去噪\Codes\Utilize\TV\TVdestripe.m
?????目錄???????????0??2017-03-14?19:51??稀疏分解圖像去噪\Codes\Utilize\UTV\
?????文件?????????477??2015-12-08?13:27??稀疏分解圖像去噪\Codes\Utilize\UTV\UTV_Demon.m
?????文件????????1956??2015-12-08?13:27??稀疏分解圖像去噪\Codes\Utilize\UTV\UTVdestripe.m
?????文件?????????238??2012-05-04?16:21??稀疏分解圖像去噪\Codes\Utilize\UTV\shrink.m
?????目錄???????????0??2017-03-14?19:51??稀疏分解圖像去噪\Codes\Utilize\WFAF\
?????文件????????1142??2015-12-08?13:54??稀疏分解圖像去噪\Codes\Utilize\WFAF\WFAF.m
?????文件????????1212??2013-03-22?10:33??稀疏分解圖像去噪\Codes\Utilize\WFAF\adpative_FFT.m
?????文件????????6372??2010-04-15?00:30??稀疏分解圖像去噪\Codes\cal_ssim.m
?????文件?????????501??2010-04-14?06:55??稀疏分解圖像去噪\Codes\csnr.m
?????文件?????????343??2011-10-25?10:05??稀疏分解圖像去噪\Codes\periodo.m
?????文件?????????680??2014-06-19?17:58??稀疏分解圖像去噪\Codes\phiprimeover2x.m
?????文件?????????386??2013-05-14?15:44??稀疏分解圖像去噪\Codes\pouxiantu.m
............此處省略9個文件信息
- 上一篇:外置聲卡32 64位系統虛擬驅動
- 下一篇:基于FPGA的倒車雷達設計
評論
共有 條評論