91av视频/亚洲h视频/操亚洲美女/外国一级黄色毛片 - 国产三级三级三级三级

  • 大小: 10.16M
    文件類型: .rar
    金幣: 2
    下載: 0 次
    發布日期: 2023-11-20
  • 語言: 其他
  • 標簽: 其他??

資源簡介

基于Tensorflow多層神經網絡的MNIST手寫數字識別(數據集源碼).rar

資源截圖

代碼片段和文件信息

#?@author?ZwwIot
#!/usr/bin/env?python
#?coding:?utf-8

#?In[17]:


import?tensorflow?as?tf
#?導入?MNIST?數據集
from?tensorflow.examples.tutorials.mnist?import?input_data
mnist?=?input_data.read_data_sets(“/data/“?one_hot?=?True)


#?In[18]:


#?參數設置
learning_rate?=?0.001
training_epochs?=?25
batch_size?=?100
display_step?=?1

#?網絡參數
n_hidden_1?=?256#?1層網絡神經元數
n_hidden_2?=?256#?2層網絡神經元數
n_input?=?784#?MNIST?data?輸入?(img?shape:?28*28)
n_classes?=?10#?MNIST?類別?(0-9?一共10類)

saver?=?tf.train.Saver()#?保存
model_path?=?“log/520model.ckpt“

#?tf?Graph?input
x?=?tf.placeholder(“float“?[None?n_input])
y?=?tf.placeholder(“float“?[None?n_classes])


#?In[19]:


#?Create?model
def?multilayer_perceptron(x?weights?biases):
????#?Hidden?layer?with?RELU?activation
????layer_1?=?tf.add(tf.matmul(x?weights[‘h1‘])biases[‘b1‘])
????layer_1?=?tf.nn.relu(layer_1)
????#?Hidden?layer?with?RELU?activation
????layer_2?=?tf.add(tf.matmul(layer_1?weights[‘h2‘])biases[‘b2‘])
????layer_2?=?tf.nn.relu(layer_2)
????#?Output?layer?with?linear?activation
????out_layer?=?tf.matmul(layer_2?weights[‘out‘])?+?biases[‘out‘]
????return?out_layer


#?In[20]:


#?Store?layers?weight?&?bias
weights?=?{
????‘h1‘:?tf.Variable(tf.random_normal([n_input?n_hidden_1]))
????‘h2‘:?tf.Variable(tf.random_normal([n_hidden_1?n_hidden_2]))
????‘out‘:?tf.Variable(tf.random_normal([n_hidden_2?n_classes]))
}
biases?=?{
????‘b1‘:?tf.Variable(tf.random_normal([n_hidden_1]))
????‘b2‘:?tf.Variable(tf.random_normal([n_hidden_2]))
????‘out‘:?tf.Variable(tf.random_normal([n_classes]))
}


#?In[21]:


#?構建模型
pred?=?multilayer_perceptron(x?weights?biases)
#?Define?loss?and?optimizer
cost?=?tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits?=?pred?labels?=?y))
optimizer?=?tf.train.AdamOptimizer(learning_rate?=?learning_rate).minimize(cost)

#?初始化變量
init?=?tf.global_variables_initializer()


#?In[25]:


#?啟動session
with?tf.Session()?as?sess:
????sess.run(tf.global_variables_initializer())
????#?啟動循環開始訓練
????for?epoch?in?range(training_epochs):
????????avg_cost?=?0.
????????total_batch?=?int(mnist.train.num_examples/batch_size)#?每一輪訓練多少批次
????????#?遍歷全部數據集
????????for?i?in?range(total_batch):
????????????batch_xs?batch_ys?=?mnist.train.next_batch(batch_size)
????????????#?Run?optimization?op?(backprop)?and?cost?op?(to?get?loss?value)
????????????_?c?=?sess.run([optimizer?cost]?feed_dict={x:?batch_xs?y:?batch_ys})
????????????#?計算平均值以使誤差值更平均
????????????avg_cost?+=?c?/?total_batch
????????????#?print(“I:“?‘%04d‘?%?(epoch?+?1)?“cost=“?“{:.9f}“.format(avg_cost))
????????#?顯示訓練中的詳細信息
????????if?(epoch+1)?%?display_step?==?0:
????????????print(“Epoch:“?‘%04d‘?%?(epoch+1)?“cost=“?“{:.9f}“.format(avg_cost))
????print(“Finished!“)
????#?測試?model
????correct_prediction?=?tf.equal(tf.argmax(pred?1)?tf.argmax(y?1))
????#?計算準確率
????accuracy?=?tf.reduce_mean(tf.cast(correct_prediction?“float“))
????print(“Accuracy:“?accuracy.eval({x:?mnist.test.images?y:?mnist.test.labels}))
???
????

?屬性????????????大小?????日期????時間???名稱
-----------?---------??----------?-----??----

?????文件???????4248??2018-12-23?23:55??MNIST多層分類.py

?????文件????7840016??2016-11-02?19:39??MNIST?DATA\MNIST?DATA\test-images

?????文件??????10008??2016-11-02?19:39??MNIST?DATA\MNIST?DATA\test-labels

?????文件???47040016??2016-11-02?19:39??MNIST?DATA\MNIST?DATA\train-images

?????文件??????60008??2016-11-02?19:39??MNIST?DATA\MNIST?DATA\train-labels

?????目錄??????????0??2018-12-23?23:56??MNIST?DATA\MNIST?DATA

?????目錄??????????0??2018-12-23?23:56??MNIST?DATA

-----------?---------??----------?-----??----

?????????????54954296????????????????????7


評論

共有 條評論