資源簡介
基于Apriori算法的商品推薦系統.zip
代碼片段和文件信息
#?Apriori
#?Importing?the?libraries
import?numpy?as?np
import?matplotlib.pyplot?as?plt
import?pandas
#?數據處理
#dataset?=?pandas.read_csv(‘Market_Basket_Optimisation.csv‘?header?=?None)
dataset?=?pandas.read_csv(‘groceries.csv‘header?=?None)
transactions?=?[]
for?i?in?range(0?dataset.shape[0]):
????transactions.append([str(dataset.values[ij])?for?j?in?range(0?dataset.shape[1])])
#?對數據及使用apyori算法
from?apyori?import?apriori
rules?=?apriori(transactions?min_support?=?0.01?min_confidence?=?0.3?min_lift?=?2?min_length?=?2)
#?可視化結果
results?=?list(rules)
#?打印各項集情況
print(“=“*90)
print(“Items“)
for?result?in?results:
????if?‘nan‘?in?list(result.items):
????????continue
????print(“=“*70)
????print(“frequent?“?+?str(len(list(result.items)))?+?“-itemsets?\t\t\t?support?\t?lift?“)
????#print(“=“*80)
????print(list(result.items)?
??????????round(result.support4)
??????????round(result.ordered_statistics[0].lift))
#?打印關聯規則
print(“=“*90)
print(“Rules“)
for?result?in?results:
????if?‘
?屬性????????????大小?????日期????時間???名稱
-----------?---------??----------?-----??----
?????文件??????302908??2018-11-19?02:23??Market_Basket_Optimisation.csv
?????目錄???????????0??2019-04-27?19:18??__MACOSX\
?????文件?????????244??2018-11-19?02:23??__MACOSX\._Market_Basket_Optimisation.csv
?????文件??????782048??2019-04-27?15:52??groceries.csv
?????文件?????????244??2019-04-27?15:52??__MACOSX\._groceries.csv
?????文件???????13808??2019-04-26?19:09??apyori.py
?????文件?????????172??2019-04-26?19:09??__MACOSX\._apyori.py
?????文件????????1733??2019-04-27?19:17??apriori.py
?????文件?????????172??2019-04-27?19:17??__MACOSX\._apriori.py
- 上一篇:算法分析與設計實驗.rar
- 下一篇:電子鐘套件(.SchDoc)
評論
共有 條評論