資源簡介
針對已訓練好的tensorflow模型,模型是根據自身需要訓練的,將模型其應用的遙感影像分類中,并顯示分類結果。
代碼片段和文件信息
import?tensorflow?as?tf
import?numpy?as?np
import?matplotlib.pyplot?as?plt
import?os
import?scipy.io?as?scio
import?cv2
import?datetimetime
os.environ[“CUDA_VISIBLE_DEVICES“]?=?‘01‘
def?discrete_matshow(data?labels_names=[]?title=““):
????#?get?discrete?colormap
????cmap?=?plt.get_cmap(‘Paired‘?np.max(data)?-?np.min(data)?+?1)
????#?set?limits?.5?outside?true?range
????mat?=?plt.matshow(data
??????????????????????cmap=cmap
??????????????????????vmin=np.min(data)?-?.5
??????????????????????vmax=np.max(data)?+?.5)
????#?tell?the?colorbar?to?tick?at?integers
????cax?=?plt.colorbar(mat
???????????????????????ticks=np.arange(np.min(data)?np.max(data)?+?1))
????#?The?names?to?be?printed?aside?the?colorbar
????if?labels_names:
????????cax.ax.set_yticklabels(labels_names)
????if?title:
????????plt.suptitle(title?fontsize=14?fontweight=‘bold‘)
def?next_batch(image?ii?h):
????j?=?14
????temp?=?[]
????while?j?????????rgb?=?image[ii?-?14:ii?+?14?j?-?14:j?+?14?:]
????????temp.append(rgb)
????????j?+=?1
????temp?=?np.array(temp)
????#?print(temp.shape)
????#?assert?temp.shape[0]?==?3972
????#?print(temp.shape)
????return?temp
img?=?cv2.imread(‘jimo_resize_2000.tif‘)
img?=?cv2.cvtColor(img?cv2.COLOR_BGR2RGB)
img?=?np.multiply(img?1.0/255.0)
print(img.shape)
m?=?img.shape[0]
n?=?img.shape[1]
print(‘load?the?model....‘)
vgg_saver?=?tf.train.import_meta_graph(‘2017.09.11-03.31.ckpt.meta‘)
vgg_graph?=?tf.get_default_graph()
#?for?n?in?tf.get_default_graph().as_graph_def().node:
#?????print(n.name)
x?=?tf.get_default_graph().get_tensor_by_name(‘Placeholder:0‘)
z?=?tf.get_default_graph().get_tensor_by_name(‘Placeholder_1:0‘)
feature?=?vgg_graph.get_tensor_by_name(“D_conv_mnist/fully_connected_2/BiasAdd:0“)
print(feature)
pred?=?tf.nn.softmax(feature)
print(‘extract?jimo?image?feature...‘)
result?=?[]
start_time?=?datetime.datetime.now()
with?tf.Session()?as?sess:
????vgg_saver.restore(sess?‘./2017.09.11-03.31.ckpt‘)
????i?=?14
????segmentation_?=?[]
????z_sample?
評論
共有 條評論