-
大小: 18KB文件類型: .py金幣: 1下載: 0 次發(fā)布日期: 2021-05-13
- 語言: Python
- 標簽: ssd_pascal??
資源簡介
ssd_pascal
代碼片段和文件信息
from?__future__?import?print_function
import?caffe
from?caffe.model_libs?import?*
from?google.protobuf?import?text_format
import?math
import?os
import?shutil
import?stat
import?subprocess
import?sys
#?Add?extra?layers?on?top?of?a?“base“?network?(e.g.?VGGNet?or?Inception).
def?AddExtralayers(net?use_batchnorm=True):
????use_relu?=?True
????#?Add?additional?convolutional?layers.
????from_layer?=?net.keys()[-1]
????#?TODO(weiliu89):?Construct?the?name?using?the?last?layer?to?avoid?duplication.
????out_layer?=?“conv6_1“
????ConvBNlayer(net?from_layer?out_layer?use_batchnorm?use_relu?256?1?0?1)
????from_layer?=?out_layer
????out_layer?=?“conv6_2“
????ConvBNlayer(net?from_layer?out_layer?use_batchnorm?use_relu?512?3?1?2)
????for?i?in?xrange(7?9):
??????from_layer?=?out_layer
??????out_layer?=?“conv{}_1“.format(i)
??????ConvBNlayer(net?from_layer?out_layer?use_batchnorm?use_relu?128?1?0?1)
??????from_layer?=?out_layer
??????out_layer?=?“conv{}_2“.format(i)
??????ConvBNlayer(net?from_layer?out_layer?use_batchnorm?use_relu?256?3?1?2)
????#?Add?global?pooling?layer.
????name?=?net.keys()[-1]
????net.pool6?=?L.Pooling(net[name]?pool=P.Pooling.AVE?global_pooling=True)
????return?net
###?Modify?the?following?parameters?accordingly?###
#?The?directory?which?contains?the?caffe?code.
#?We?assume?you?are?running?the?script?at?the?CAFFE_ROOT.
caffe_root?=?os.getcwd()
#?Set?true?if?you?want?to?start?training?right?after?generating?all?files.
run_soon?=?True
#?Set?true?if?you?want?to?load?from?most?recently?saved?snapshot.
#?Otherwise?we?will?load?from?the?pretrain_model?defined?below.
resume_training?=?True
#?If?true?Remove?old?model?files.
remove_old_models?=?False
#?The?database?file?for?training?data.?Created?by?data/VOC2007/create_data.sh
train_data?=?“examples/VOC2007/VOC2007_trainval_lmdb“
#?The?database?file?for?testing?data.?Created?by?data/VOC2007/create_data.sh
test_data?=?“examples/VOC2007/VOC2007_test_lmdb“
#?Specify?the?batch?sampler.
resize_width?=?300
resize_height?=?300
resize?=?“{}x{}“.format(resize_width?resize_height)
batch_sampler?=?[
????????{
????????????????‘sampler‘:?{
????????????????????????}
????????????????‘max_trials‘:?1
????????????????‘max_sample‘:?1
????????}
????????{
????????????????‘sampler‘:?{
????????????????????????‘min_scale‘:?0.3
????????????????????????‘max_scale‘:?1.0
????????????????????????‘min_aspect_ratio‘:?0.5
????????????????????????‘max_aspect_ratio‘:?2.0
????????????????????????}
????????????????‘sample_constraint‘:?{
????????????????????????‘min_jaccard_overlap‘:?0.1
????????????????????????}
????????????????‘max_trials‘:?50
????????????????‘max_sample‘:?1
????????}
????????{
????????????????‘sampler‘:?{
????????????????????????‘min_scale‘:?0.3
????????????????????????‘max_scale‘:?1.0
????????????????????????‘min_aspect_ratio‘:?0.5
????????????????????????‘max_aspect_ratio‘:?2.0
????????????????????????}
????????????????‘sample_constraint‘:?{
???
- 上一篇:基于多變量線性回歸的房屋銷售價格預測.zip
- 下一篇:python api chm
評論
共有 條評論