資源簡(jiǎn)介
使用Python處理數(shù)據(jù)1.0的完整代碼,具體情境應(yīng)用見相應(yīng)的博客
代碼片段和文件信息
#?-*-?coding:?utf-8?-*-
“““
Spyder?Editor
This?is?a?temporary?script?file.
“““
import?pandas?as?pd
df?=?pd.read_excel(r‘C:\Users\YangZhou\Desktop\data\LabData.xlsx‘)
#刪除病名列
del?df[‘CLINICAL_DIAGNOSES_NAME‘]
#修改歲數(shù)和特定列
def?convert(valuedata1data2):
????“““
????轉(zhuǎn)換字符串string為float類型小數(shù)
????-?移除string
????-?轉(zhuǎn)化為float
????“““
????if?isinstance(valuestr):
????????if(value.find(data1)?!=?-1):
????????????value?=?float(value.replace(data1?data2))
????return?value
df[‘AGE_INPUT‘]?=?df[‘AGE_INPUT‘].apply(convertdata1?=?‘歲‘data2?=?‘‘)
df[‘BLA%‘]?=?df[‘BLA%‘].apply(convertdata1?=?‘/‘data2?=?‘0‘)
#處理單位
df[‘LAC‘]?=?df[‘LAC‘].apply(convertdata1?=?‘mmol/l‘data2?=?‘-1000‘)
df[‘P5O‘]?=?df[‘P5O‘].apply(convertdata1?=?‘mmHg‘data2?=?‘-1000‘)
#全表修改<
for?i?in?range(df.columns.size):
????if?df[df.columns[i]].dtype?==?‘object‘:
????????df[df.columns[i]]?=?df[df.columns[i]].apply(convertdata1?=?‘<‘data2?=?‘‘)
??????????????
#全表修改陰性,可疑屬性
def?instead(valuedata1data2):
????“““
????轉(zhuǎn)換字符串string為數(shù)值
????-?刪除string
????-?轉(zhuǎn)化為相應(yīng)數(shù)值
????“““
????if(value.find(data1)?!=?-1):
????????????value?=?data2
????return?value
def?func(value):
????if??isinstance(valuestr):
????????tempt?=?instead(value?‘-‘?1)
????????tempt1?=?instead(value?‘陰性‘?1)
????????if?tempt?!=?1?and?tempt1?!=?1:
????????????tempt?=?instead(value?‘±‘?2)
????
評(píng)論
共有 條評(píng)論