資源簡介
可以運行的LSTM實例,python代碼實現,如有問題,可以隨時聯系我,希望可以和人工智能盆友多多交流,,,,,,,,,,,,,,,,,,,,,,,,,,,
代碼片段和文件信息
import?tensorflow?as?tf
from?tensorflow.examples.tutorials.mnist?import?input_data
#?set?random?seed?for?comparing?the?two?result?calculations
tf.set_random_seed(1)
#?this?is?data
mnist?=?input_data.read_data_sets(‘MNIST_data‘?one_hot=True)
#?hyperparameters
lr?=?0.001
training_iters?=?100000
batch_size?=?128
n_inputs?=?28???#?MNIST?data?input?(img?shape:?28*28)
n_steps?=?28????#?time?steps
n_hidden_units?=?128???#?neurons?in?hidden?layer
n_classes?=?10??????#?MNIST?classes?(0-9?digits)
#?tf?Graph?input
x?=?tf.placeholder(tf.float32?[None?n_steps?n_inputs])
y?=?tf.placeholder(tf.float32?[None?n_classes])
#?Define?weights
weights?=?{
????#?(28?128)
????‘in‘:?tf.Variable(tf.random_normal([n_inputs?n_hidden_units]))
????#?(128?10)
????‘out‘:?tf.Variable(tf.random_normal([n_hidden_units?n_classes]))
}
biases?=?{
????#?(128?)
????‘in‘:?tf.Variable(tf.constant(0.1?shape=[n_hidden_units?]))
????#?(10?)
????‘out‘:?tf.Variable(tf.constant(0.1?shape=[n_classes?]))
}
def?RNN(X?weights?biases):
????#?hidden?layer?for?input?to?cell
????########################################
????#?transpose?the?inputs?shape?from
????#?X?==>?(128?batch?*?28?steps?28?inputs)
????X?=?tf.reshape(X?[-1?n_inputs])
????#?into?hidden
????#?X_in?=?(128?batch?*?28?steps?128?hidden)
????X_in?=?tf.matmul(X?weights[‘in‘])?+?biases[‘in‘]
????#?X_in?==>?(128?batch?28?steps?128?hidden)
????X_in?=?tf.reshape(X_in?[-1?n_steps?n_hidden_units])
????#?cell
????##########################################
????#?basic?LSTM?Cell.
????#?if?int((tf.__version__).split(‘.‘)[1])?12?and?int((tf.__version__).split(‘.‘)[0])?1:
????#?????lstm_cell?=?tf.nn.rnn_cell.BasicLSTMCell(n_hidden_units?forget_bias=1.0?state_is_tuple=True)
????#?else:
????#?????print(“22222“)
????#?????lstm_cell?=?tf.contrib.rnn.BasicLSTMCell(n_hidden_units)
評論
共有 條評論