-
大小:文件類型: .py金幣: 1下載: 0 次發布日期: 2021-06-15
- 語言: Python
- 標簽: TensorFlow??
資源簡介
TensorFlow實現股票預測的Python代碼
代碼片段和文件信息
‘‘‘
Created?on?16/02/2017
@author:?smas255
‘‘‘
import?tensorflow?as?tf
import?numpy?as?np
from?sklearn?import?preprocessing
from?sklearn.model_selection?import?train_test_split
from?sklearn?import?metrics
import?math
from?matplotlib?import?pyplot
#?Read?data?from?csv?file
def?get_data(filename):????
????#?Read?file
????priceDataset=np.loadtxt(open(filename?“rb“)?delimiter=““?skiprows=1)
????#?Scale?data???
????scaler?=?preprocessing.MinMaxScaler(feature_range=(0?1))????
????X_dataset=scaler.fit_transform(priceDataset[...0])
????Y_dataset=scaler.fit_transform(priceDataset[...1])
????#?Split?data?to?training?and?test?
????X_train?X_test?y_train?y_test?=?train_test_split(
????????X_dataset?Y_dataset?test_size=0.3?random_state=1234)
????return?scalerX_train?X_test?y_train?y_test
#?Create?model
def?multilayer_perceptron(x?weights?biases):
????#?Hidden?layer?with?Tanh?activation
????layer_1?=?tf.add(tf.matmul(x?weights[‘h1‘])?biases[‘b1‘])
????layer_1?=?tf.nn.tanh(layer_1)
????#?Hidden?layer?with?Tanh?activation
????layer_2?=?tf.add(tf.matmul(layer_1?weights[‘h2‘])?biases[‘b2‘])
????layer_2?=?tf.nn.tanh(layer_2)???
????#?Output?layer?with?linear?activation
????out_layer?=?tf.matmul(layer_2?weights[‘out‘])?+?biases[‘out‘]
????return?out_layer
if?__name__?==?‘__main__‘:??
????#?Create?training?and?test?
????scaler?x_train?x_test?y_train?y_test?=get_data(‘./data/aapl.csv‘)???
????#?Reshape?data?for?a?network?with?single?input?and?output
????x_train=np.reshape(x_train?(-1?1))
????y_train=np.reshape(y_train?(-1?1))
????x_test=np.reshape(x_test?(-1?1))
????y_test=np.reshape(y_test?(-1?1))
????#?Get?size?of?training?
????total_len?=?x_train.shape[0]
????#?Parameters
????learning_rate?=?0.01
????training_epochs?=?700
????batch_size?=?5
????display_step?=?1
????
????#?Network?Parameters
????n_hidden_1?=?15?#?1st?layer?number?of?features
????n_hidden_2?=?7?#?2nd?layer?number?of?features????
????n_input?=?x_train.shape[1]
????n_output?=?1
????
????#?tf?Graph?input
????x?=?tf.placeholder(“float“?[None?1])
????y?=?tf.placeholder(“float“?[None1])
????
????#?Create?weights?and?bias?vector?with?constant?data?to?be?similar?to?Azure?machine?learning?service?
????weights_1?=?np.empty([n_input?n_hidden_1]dtype=np.float32)
????weights_2?=?np.empty([n_hidden_1?n_hidden_2]dtype=np.float32)
????weights_3?=?np.empty([n_hidden_2?n_output]dtype=np.float32)
????weights_1.fill(0.1)
????weights_2.fill(0.1)
????weights_3.fill(0.1)
????bias_1=np.empty(n_hidden_1dtype=np.float32)
????bias_2=np.empty(n_hid
- 上一篇:解壓微信小程序源碼python文件
- 下一篇:kNN分類器和兩個-Python
評論
共有 條評論