-
大小:文件類型: .rar金幣: 2下載: 0 次發(fā)布日期: 2021-06-16
- 語言: Python
- 標(biāo)簽: 機(jī)器學(xué)習(xí)??人工智能??深度學(xué)習(xí)??python??
資源簡介

代碼片段和文件信息
#?-*-?coding:?utf-8?-*-
“““
Created?on?Fri?Feb??1?09:26:48?2019
@author:?McGill
“““
from?keras.datasets?import?imdb
(train_data?train_labels)?(test_data?test_labels)=imdb.load_data(num_words=10000)
#將編碼根據(jù)詞表轉(zhuǎn)化為具體單詞
def?trans2words(data):
????word_index=imdb.get_word_index()
????reverse_word_index=dict([(valuekey)?for?(keyvalue)?in?word_index.items()])
????decoded_review=‘?‘.join([reverse_word_index.get(i-3?‘?‘)?for?i?in?data])
????return?decoded_review
#one-hot序列化
import?numpy?as?np
def?vectorize_seqs(seqs?dim=10000):
????results=np.zeros((len(seqs)dim))
????for?i?seq?in?enumerate(seqs):
????????results[iseq]=1.
????return?results
x_train=vectorize_seqs(train_data)
x_test=vectorize_seqs(test_data)
#將label也向量化
y_train=np.asarray(train_labels).astype(‘float32‘)
y_test=np.asarray(test_labels).astype(‘float32‘)
#模型定義
from?keras?import?models
from?keras?import?layers
model=models.Sequential()
model.add(layers.Dense(16activation=‘relu‘input_shape=(10000)))
model.add(layers.Dense(16activation=‘relu‘))
model.add(layers.Dense(1activation=‘sigmoid‘))
‘‘‘‘‘
#留出驗證集
x_val=x_train[:10000]
partial_x_train=x_train[10000:]
y_val=y_train[:10000]
partial_y_train=y_train[10000:]
‘‘‘‘‘
#訓(xùn)練模型
#編譯模型
model.compile(optimizer=‘rmsprop‘
??????????????loss=‘binary_crossentropy‘
??????????????metrics=[‘a(chǎn)ccuracy‘])
model.fit(x_train?y_train?epochs=4?batch_size=512)
results=model.evaluate(x_test?y_test)
‘‘‘
history=model.fit(partial_x_train
??????????????????partial_y_train
??????????????????epochs=20
??????????????????batch_size=512
??????????????????validation_data=(x_val?y_val))
‘‘‘
‘‘‘
#繪圖查看訓(xùn)練情況
import?matplotlib.pyplot?as?plt
history_dict=history.history
loss_values=history_dict[‘loss‘]
val_loss_values=history_dict[‘val_loss‘]
epochs=range(1len(loss_values)+1)
plt.plot(epochs?loss_values?‘bo‘?label=‘Training?loss‘)
plt.plot(epochs?val_loss_values?‘b‘?label=‘Validation?loss‘)
plt.title(‘Training?and?validation?loss‘)
plt.xlabel(‘Epochs‘)
plt.ylabel(‘Loss‘)
plt.legend()
plt.show()
‘‘‘
print(results)
print(model.predict(x_test))
?屬性????????????大小?????日期????時間???名稱
-----------?---------??----------?-----??----
?????文件????????729??2019-02-11?17:12??6.1.1_one_hot.py
?????文件????????930??2019-02-12?11:43??6.1.2_1_word_em
?????文件???????4185??2019-02-12?14:19??6.1.3.py
?????文件???????1418??2019-02-13?17:06??6.2_RNN.py
?????文件???????7654??2019-02-13?22:01??6.3.py
?????文件???????1551??2019-02-14?17:15??6.4_conv_for_sequences.py
?????文件???????2493??2019-02-15?22:41??8.1.py
?????文件???????4658??2019-02-17?21:59??8.3.3.py
?????文件???????2368??2019-02-01?14:07??3.4_imdb.py
?????文件???????2387??2019-02-01?15:00??3.5_reuters.py
?????文件???????2207??2019-02-01?16:43??3.6_boston_housing.py
?????文件???????2754??2019-02-09?00:15??5.2_dogs_vs_cats.py
?????文件???????2214??2019-02-07?17:05??5.2_dogs_vs_cats_mkdir.py
?????文件???????2920??2019-02-11?14:10??5.3_VGG16.py
?????文件???????2826??2019-02-11?11:33??5.3_VGG16_2.py
?????文件????????781??2019-02-11?14:52??5.4.1_visualization.py
-----------?---------??----------?-----??----
????????????????42075????????????????????16
評論
共有 條評論