91av视频/亚洲h视频/操亚洲美女/外国一级黄色毛片 - 国产三级三级三级三级

  • 大小: 6KB
    文件類型: .py
    金幣: 2
    下載: 1 次
    發布日期: 2021-06-17
  • 語言: Python
  • 標簽: CNN??

資源簡介

模仿VGGnet基于keras的cifar-10圖像識別模型,epoch可以稍微小一點

資源截圖

代碼片段和文件信息

#?-*-?coding:?utf-8?-*-
import?os
os.environ[‘KERAS_BACKEND‘]=‘tensorflow‘

import?numpy?as?np
from?keras?import?layers?regularizers
from?keras.layers?import?Input?Dense?Activation?ZeroPadding2D?BatchNormalization?Flatten?Conv2D
from?keras.layers?import?AveragePooling2D?MaxPooling2D?Dropout?GlobalMaxPooling2D?GlobalAveragePooling2D
from?keras.models?import?Model
from?keras.preprocessing?import?image
from?keras.utils?import?layer_utils
from?keras.utils.data_utils?import?get_file
from?keras.applications.imagenet_utils?import?preprocess_input
import?pydot
import?graphviz
from?IPython.display?import?SVG
from?keras.utils.vis_utils?import?model_to_dot
from?keras.utils?import?plot_model
import?pickle

def?HappyModel(input_shape):
????“““
????Implementation?of?the?HappyModel.
????
????Arguments:
????input_shape?--?shape?of?the?images?of?the?dataset

????Returns:
????model?--?a?Model()?instance?in?Keras
????“““
????
????###?START?CODE?HERE?###
????#?Feel?free?to?use?the?suggested?outline?in?the?text?above?to?get?started?and?run?through?the?whole
????#?exercise?(including?the?later?portions?of?this?notebook)?once.?The?come?back?also?try?out?other
????#?network?architectures?as?well.?
????#?Define?the?input?placeholder?as?a?tensor?with?shape?input_shape.?Think?of?this?as?your?input?image!
????X_input?=?Input(input_shape)
????
????#?layer1?group?16*16*8
????X?=?ZeroPadding2D((3?3))(X_input)
????X?=?Conv2D(8?(7?7)?strides=(1?1)?name=‘conv1‘)(X)
????X?=?BatchNormalization(axis?=?3?name?=?‘bn1‘)(X)
????X?=?Activation(‘relu‘)(X)
????X?=?MaxPooling2D((2?2)?name=‘max_pool1‘)(X)
????
????#?layer2?group?8*8*16
????X?=?ZeroPadding2D((2?2))(X)
????X?=?Conv2D(16?(5?5)?strides=(1?1)?name=‘conv2‘)(X)
????X?=?BatchNormalization(axis?=?3?name?=?‘bn2‘)???(X)
????X?=?Activation(‘relu‘)(X)
????X?=?MaxPooling2D((2?2)?name=‘max_pool2‘)(X)
????
????#?layer3?group?4*4*32
????X?=?ZeroPadding2D((1?1))(X)
????X?=?Conv2D(32?(3?3)?strides=(1?1)?name=‘conv3‘)(X)
????X?=?BatchNormalization(axis?=?3?name?=?‘bn3‘)???(X)
????X?=?Activation(‘relu‘)(X)
????X?=?MaxPooling2D((2?2)?name=‘max_pool3‘)(X)
????
????#layer4?group?2*2*64
????X?=?Conv2D(64?(1?1)?strides=(1?1)?name=‘conv4‘)(X)
????X?=?BatchNormalization(axis?=?3?name?=?‘bn4‘)(X)
????X?=?Activation(‘relu‘)(X)
????X?=?MaxPooling2D((2?2)?name=‘max_pool4‘)(X)
????
????#layer5?group?2*2*32
????X?=?ZeroPadding2D((1?1))(X)
????X?=?Conv2D(32?(3?3)?strides=(1?1)?name=‘conv5‘)(X)
????X?=?BatchNormalization(axis?=?3?name?=?‘bn5‘)(X)
????X?=?Activation(‘relu‘)(X)
????X?=?MaxPooling2D((2?2)?name=‘max_pool5‘)(X)
????
????#?FLATTEN?X?(means?convert?it?to?a?vector)?+?FULLYCONNECTED
????X?=?Flatten()(X)
????X?=?Dense(128?activation=‘sigmoid‘?name=‘fc1‘)(X)
????X?=?Dense(32?activation=‘sigmoid‘?name=‘fc2‘)(X)
????X?=?Dense(10?activation=‘sigmoid‘?name=‘fc3‘)(X)
????
????#?Create?mod

評論

共有 條評論