資源簡介
鳶尾花卉數據集,是一類多重變量分析的數據集。通過花萼長度,花萼寬度,花瓣長度,花瓣寬度4個屬性預測鳶尾花卉屬于(Setosa,Versicolour,Virginica)三個種類中的哪一類。是機器學習基礎學習的典型案例。

代碼片段和文件信息
#?coding?:utf-8
import?pandas?as?pd
import?numpy?as?np
from?sklearn.linear_model?import?LogisticRegression
from??sklearn.model_selection?import?train_test_split
import?matplotlib?as?mpl
import?matplotlib.pyplot?as?plt
from?sklearn?import?svm
import?matplotlib.patches?as?mpatches
from?sklearn.preprocessing?import?StandardScaler?PolynomialFeatures
from?sklearn.pipeline?import?Pipeline
def?iris_type(s):
????it?=?{b‘Iris-setosa‘:?0
??????????b‘Iris-versicolor‘:?1
??????????b‘Iris-virginica‘:?2}
????return?it[s]
if?__name__==“__main__“:
????data=np.loadtxt(‘.\\iris.data‘delimiter=‘‘converters={4:iris_type})
????x=data[:0:2]
????y=data[:4]
????x_trainx_testy_trainy_test=train_test_split(xytest_size=0.2random_state=1)
????#Ir?=?Pipeline([(‘sc‘?StandardScaler())?‘poly‘?PolynomialFeatures(degree=2))(‘clf‘?LogisticRegression())?])
????#?Ir=LogisticRegression(C=4.6)
????Ir=svm.SVC(C=1kernel=‘rbf‘decision_function_shape=‘ovo‘)
????Ir.fit(x_trainy_train)
????y_hat=Ir.predict(x_test)
????print(‘訓練集準確度:‘?Ir.score(x_trainy_train))
????print(‘測試集準確度:‘?Ir.score(x_testy_test))
????err_y?=?y_test[y_test?!=?y_hat]
????print(y_test)
????print(err_y)
????#畫圖
?屬性????????????大小?????日期????時間???名稱
-----------?---------??----------?-----??----
?????文件???????4551??2018-05-17?11:58??鳶尾花線性回歸\iris.data
?????文件???????1250??2018-10-15?15:47??鳶尾花線性回歸\test3_LG.py
?????目錄??????????0??2018-12-07?12:50??鳶尾花線性回歸
-----------?---------??----------?-----??----
?????????????????5801????????????????????3
- 上一篇:機房批量修改ip腳本
- 下一篇:數據的導入與預處理課程設計附帶報告書
評論
共有 條評論