91av视频/亚洲h视频/操亚洲美女/外国一级黄色毛片 - 国产三级三级三级三级

  • 大小: 16.66MB
    文件類型: .rar
    金幣: 1
    下載: 0 次
    發(fā)布日期: 2023-07-27
  • 語(yǔ)言: Python
  • 標(biāo)簽: IMDB預(yù)測(cè)??

資源簡(jiǎn)介

基于python3.6實(shí)現(xiàn)的,Keras相關(guān)資源:LSTM預(yù)測(cè)模型訓(xùn)練,IMDB數(shù)據(jù)加載,國(guó)際旅行人數(shù)預(yù)測(cè),IMDB影評(píng)分類預(yù)測(cè),數(shù)據(jù)標(biāo)準(zhǔn)化,模型保存到本地,從本地加載訓(xùn)練好的模型,plt圖形繪制,以及IMDB數(shù)據(jù)和國(guó)際旅行人數(shù)數(shù)據(jù)包。

資源截圖

代碼片段和文件信息

from?keras.models?import?Sequential
from?keras.layers?import?Dense
from?keras.optimizers?import?SGD
from?keras.layers?import?Dropout
from?keras.wrappers.scikit_learn?import?KerasClassifier
from?sklearn.model_selection?import?cross_val_score
from?sklearn.model_selection?import?KFold
from?keras.callbacks?import?LearningRateScheduler
from?sklearn?import?datasets
import?numpy?as?np
#?設(shè)定隨機(jī)數(shù)種子
seed=7
np.random.seed(seed)

#?導(dǎo)入數(shù)據(jù)
dataset?=?np.loadtxt(‘pima-indians-diabetes.csv‘?delimiter=‘‘)
#?分割輸入x和輸出Y
x?=?dataset[:?0?:?8]#數(shù)據(jù)
y?=?dataset[:?8]#標(biāo)簽

def?Createfisrt_model(xy):
????“““輸入數(shù)據(jù)訓(xùn)練模型并返回“““
????#?創(chuàng)建模型
????model?=?Sequential()
????model.add(Dense(16?input_dim=8?activation=‘relu‘))#第一層隱藏元12個(gè)
????model.add(Dense(8?activation=‘relu‘))#第二層隱藏元8個(gè)
????model.add(Dense(1?activation=‘sigmoid‘))#輸出層一個(gè)神經(jīng)元
????#?編譯模型
????model.compile(loss=‘binary_crossentropy‘?optimizer=‘a(chǎn)dam‘?metrics=[‘a(chǎn)ccuracy‘])
????#?訓(xùn)練模型
????model.fit(x=x?y=y?epochs=150?batch_size=10?validation_split=0.2)
????#?評(píng)估模型
????scores?=?model.evaluate(x=x?y=y?verbose=0)
????print(‘\n%s?:?%.2f%%‘?%?(model.metrics_names[1]?scores[1]*100))
????return?model

def?get_model(filename=‘model‘choosemodel=‘json‘):
????“““
????載入訓(xùn)練好的模型json
????:param?filename:模型名
????:return:?model:返回模型
????“““
????if?choosemodel==‘json‘:
????????from?keras.models?import?model_from_json
????????model?=?model_from_json(open(filename+‘.json‘).read())
????????model.load_weights(filename+‘.h5‘)
????????model.compile(loss=‘binary_crossentropy‘?optimizer=‘a(chǎn)dam‘?metrics=[‘a(chǎn)ccuracy‘])
????????print(“Get?json?model!“)
????????return?model
????elif?choosemodel==‘yaml‘:
????????from?keras.models?import?model_from_yaml
????????model=model_from_yaml(open(filename+‘.yaml‘).read())
????????model.load_weights(filename+‘.h5‘)
????????model.compile(loss=‘binary_crossentropy‘?optimizer=‘a(chǎn)dam‘?metrics=[‘a(chǎn)ccuracy‘])
????????print(“Get?yaml?model!“)
????????return?model

def?save_model(modelfilename=‘model‘choosemodel=‘json‘):
????“““
????保存訓(xùn)練好的模型json
????:param?model:?傳入模型
????:param?filename:?保存模型名
????:return:?None
????“““
????if?choosemodel==‘json‘:
????????json_string?=?model.to_json()
????????open(filename+‘.json‘‘w‘).write(json_string)
????????model.save_weights(filename+‘.h5‘?overwrite=True)
????????print(“Save?json?model!“)
????elif?choosemodel==‘yaml‘:
????????yaml_string=model.to_yaml()
????????open(filename+‘.yaml‘‘w‘).write(yaml_string)
????????model.save_weights(filename+‘.h5‘overwrite=True)
????????print(“Save?yaml?model!“)

def?plt_model(historyhistorylist=[‘val_loss‘‘val_acc‘‘loss‘‘a(chǎn)cc‘]):
????“““
????繪制model的相關(guān)參數(shù)準(zhǔn)確度和損失的訓(xùn)練梯度走勢(shì)
????:param?history:?傳入model.fit()
????:param?historylist:?history.history.keys()的參數(shù)數(shù)組
????:return:?繪制顯示結(jié)果
????“““
????#?print(history.history.keys())#可以通過(guò)打印查看historylist的值
????from?matplotlib?import??pyplot?as?plt
????def?pltshow(modeltestval_modeltest):
????????plt.plot(history.history[modeltest])
????????plt.plot(history.history[val_modeltest])
????????plt.title(‘model‘+

?屬性????????????大小?????日期????時(shí)間???名稱
-----------?---------??----------?-----??----

?????文件???17464789??2018-12-04?20:34??LSTM\imdb.npz

?????文件???????1898??2018-12-05?19:26??LSTM\international-airline-passengers.csv

?????文件???????7115??2018-12-04?19:43??LSTM\Keras基礎(chǔ).py

?????文件???????8230??2018-12-06?17:14??LSTM\LSTM_Forecast.py

?????文件???????7600??2018-12-06?21:04??LSTM\LSTM_imdb_nn.py

?????目錄??????????0??2018-12-06?21:22??LSTM

-----------?---------??----------?-----??----

?????????????17489632????????????????????6


評(píng)論

共有 條評(píng)論