91av视频/亚洲h视频/操亚洲美女/外国一级黄色毛片 - 国产三级三级三级三级

資源簡介

吳恩達機器學習編程作業python3版本

資源截圖

代碼片段和文件信息

#本文是高斯分布用于異常檢測
#load?data?set?
import?scipy.io?as?sio
import?numpy?as?np
import?matplotlib.pyplot?as?plt
data?=?sio.loadmat(‘ex8data1.mat‘)
X?=?data[‘X‘]
Xval?=?data[‘Xval‘]
yval?=?data[‘yval‘]
print?(X.shapeXval.shapeyval.shape)
print?(X[:5])
print?(yval[:5])
plt.plot(X[:0]X[:1]‘bx‘)??#?沿坐標軸劃線函數plot?x1?and?x2?using?blue?x?markers
plt.xlim(0?30)
plt.ylim(0?30)
plt.title(‘Visualize?the?ex8data1‘)
plt.xlabel(‘Latency?(ms)‘)
plt.ylabel(‘Throughput?(mb/s)‘)
plt.show()

#?高斯分布
from?scipy?import?stats?#??內置有計算數據點屬于正態分布的概率的方法
#?求得均值和方差
def?estimateGaussian(x):
????#?train?set?x?fit?the?musigma2
????m?n?=?x.shape
????mu?=?np.mean(x?axis=0).reshape(1?-1)??#?僅變成1行,不管多少列
????#?sigma2?=?np.sum(np.square(x?-?mu)axis=0).reshape(1-1)?/?m
????sigma2?=?np.var(x?axis=0).reshape(1?-1)??#?求方差,也可直接求標準差sigma
????return?mu?sigma2

#?計算高斯概率
def?p(x?mu?sigma2):
????#?x?is?a?new?example:[m*n]
????m?n?=?x.shape
????p_list?=?[]

????for?j?in?range(m):
????????p?=?1
????????for?i?in?range(n):
????????????p?*=?stats.norm.pdf(x[j?i]?mu[0?i]?np.sqrt(sigma2[0?i]))
????????????#?stats.norm.pdf(xmeansigma)
????????p_list.append(p)
????p_array?=?np.array(p_list).reshape(-1?1)??#?僅為1列
????return?p_array
mu?sigma2?=?estimateGaussian(X)
print(‘mu.shape:‘mu.shape?‘sigma2.shape:‘?sigma2.shape)
print(‘mu:‘mu?‘sigma2:‘?sigma2)
p_train?=?p(X?mu?sigma2)??#?調用p(x?mu?sigma2)函數,也僅為1列
print(‘p_train[:5]:‘?p_train[:5])
p_val?=?p(Xval?mu?sigma2)
print(‘p_val[:5]:‘?p_val[:5])


#?cross?validation?for?select?threshold
#?交叉驗證用于閾值選定這里用的是F1?score這個評估指標
def?selectThreshold(y?pval):
????bestEpsilon?=?0
????bestF1?=?0
????stepSize?=?(np.max(pval)?-?np.min(pval))?/?1000??#?為何如此選取?

????for?epsilon?in?np.arange(np.min(pval)?np.max(pval)?stepSize):
????????predictions?=?(pval?????????#?fp=?np.sum((predictions?==?1)?&?(y?==?0))
????????fp?=?np.sum((predictions?==?1)?&?(y?==?0))
????????fn?=?np.sum((predictions?==?0)?&?(y?==?1))
????????tp?=?np.sum((predictions?==?1)?&?(y?==?1))
????????if?tp?+?fp?==?0:
????????????precision?=?0
????????else:
????????????precision?=?float(tp)?/?(tp?+?fp)??#?note!!!!float!!!
????????if?tp?+?fn?==?0:
????????????recall?=?0
????????else:
????????????recall?=?float(tp)?/?(tp?+?fn)

????????if?precision?+?recall?==?0:
????????????F1?=?0
????????else:
????????????F1?=?2.0?*?precision?*?recall?/?(precision?+?recall)
????????if?F1?>?bestF1:
????????????bestF1?=?F1
????????????bestEpsilon?=?epsilon
????return?bestEpsilon?bestF1
#test?the?cs
epsilonF1?=?selectThreshold(yvalp_val)
print(“Best?epsilon?found?using?cross-validation:?%e“%(epsilon))
print(“Best?F1?on?Cross?Validation?Set:??%f“%(F1))

#?可視化一下檢測是異常值
print(“Outliers?found:?%d?“?%?(np.sum(p_train?
#?visualization:Draw?a?red?circle?around?those?outliers
outliters?=?np.where(p_train.ravel()?
plt.plot(X[:?0]?X[:?1]?‘bx‘)
plt.plot(X[outliters

?屬性????????????大小?????日期????時間???名稱
-----------?---------??----------?-----??----
?????目錄???????????0??2018-02-08?16:05??Coursera_python3\
?????目錄???????????0??2018-02-08?16:04??Coursera_python3\Gauss?Anomaly?detection\
?????目錄???????????0??2018-02-08?16:04??Coursera_python3\Gauss?Anomaly?detection\.idea\
?????文件?????????317??2018-02-07?14:14??Coursera_python3\Gauss?Anomaly?detection\.idea\Gauss?Anomaly?detection.iml
?????文件?????????185??2018-02-07?14:12??Coursera_python3\Gauss?Anomaly?detection\.idea\misc.xml
?????文件?????????298??2018-02-07?14:12??Coursera_python3\Gauss?Anomaly?detection\.idea\modules.xml
?????文件????????1048??2018-02-07?14:12??Coursera_python3\Gauss?Anomaly?detection\.idea\workspace.xml
?????文件????????5214??2018-02-07?15:46??Coursera_python3\Gauss?Anomaly?detection\Gauss?Anomaly?detection.py
?????文件????????9501??2017-12-11?15:07??Coursera_python3\Gauss?Anomaly?detection\ex8data1.mat
?????文件???????93481??2017-12-11?15:07??Coursera_python3\Gauss?Anomaly?detection\ex8data2.mat
?????目錄???????????0??2018-02-08?16:04??Coursera_python3\K-means聚類\
?????目錄???????????0??2018-02-08?16:04??Coursera_python3\K-means聚類\.idea\
?????文件?????????317??2018-01-23?15:45??Coursera_python3\K-means聚類\.idea\K-means聚類.iml
?????文件?????????185??2018-01-23?15:41??Coursera_python3\K-means聚類\.idea\misc.xml
?????文件?????????278??2018-01-23?15:41??Coursera_python3\K-means聚類\.idea\modules.xml
?????文件????????1048??2018-01-23?15:41??Coursera_python3\K-means聚類\.idea\workspace.xml
?????文件????????4485??2018-01-29?16:07??Coursera_python3\K-means聚類\Kmeans(also?for?3d).py
?????文件???????45606??2017-09-27?22:01??Coursera_python3\K-means聚類\bird_small.mat
?????文件???????33031??2017-09-27?22:01??Coursera_python3\K-means聚類\bird_small.png
?????文件?????????995??2017-12-11?15:07??Coursera_python3\K-means聚類\ex7data1.mat
?????文件????????4784??2017-12-11?15:07??Coursera_python3\K-means聚類\ex7data2.mat
?????文件????11027767??2017-12-11?15:07??Coursera_python3\K-means聚類\ex7faces.mat
?????文件????????4071??2018-01-24?15:16??Coursera_python3\K-means聚類\kmeans(not?suitbale?for?3d).py
?????目錄???????????0??2018-02-08?16:04??Coursera_python3\PCA\
?????目錄???????????0??2018-02-08?16:04??Coursera_python3\PCA\.idea\
?????文件?????????317??2018-01-30?16:35??Coursera_python3\PCA\.idea\PCA.iml
?????文件?????????258??2018-01-30?16:27??Coursera_python3\PCA\.idea\modules.xml
?????文件????????1048??2018-01-30?16:27??Coursera_python3\PCA\.idea\workspace.xml
?????文件????????2444??2018-01-30?18:32??Coursera_python3\PCA\PCA.py
?????文件?????????995??2017-12-11?15:07??Coursera_python3\PCA\ex7data1.mat
?????文件????11027767??2017-12-11?15:07??Coursera_python3\PCA\ex7faces.mat
............此處省略2356個文件信息

評論

共有 條評論