91av视频/亚洲h视频/操亚洲美女/外国一级黄色毛片 - 国产三级三级三级三级

資源簡介

本壓縮包包括了K-SVD,k-means的python代碼實現,同時還提供了自制的PPT詳解,同時包括K-SVD最經典的論文一篇,內容充實易懂,歡迎大家學習下載。

資源截圖

代碼片段和文件信息

import?numpy?as?np
from?sklearn?import?linear_model
import?scipy.misc
from?matplotlib?import?pyplot?as?plt


class?KSVD(object):
????def?__init__(self?n_components?max_iter=30?tol=1e-6
?????????????????n_nonzero_coefs=None):
????????“““
????????稀疏模型Y?=?DX,Y為樣本矩陣,使用KSVD動態更新字典矩陣D和稀疏矩陣X
????????:param?n_components:?字典所含原子個數(字典的列數)
????????:param?max_iter:?最大迭代次數
????????:param?tol:?稀疏表示結果的容差
????????:param?n_nonzero_coefs:?稀疏度
????????“““
????????self.dictionary?=?None
????????self.sparsecode?=?None
????????self.max_iter?=?max_iter
????????self.tol?=?tol
????????self.n_components?=?n_components
????????self.n_nonzero_coefs?=?n_nonzero_coefs

????def?_initialize(self?y):
????????“““
????????初始化字典矩陣
????????“““
????????u?s?v?=?np.linalg.svd(y)
????????self.dictionary?=?u[:?:self.n_components]

????def?_update_dict(self?y?d?x):
????????“““
????????使用KSVD更新字典的過程
????????“““
????????for?i?in?range(self.n_components):
????????????index?=?np.nonzero(x[i?:])[0]
????????????if?len(index)?==?0:
????????????????continue

????????????d[:?i]?=?0
????????????r?=?(y?-?np.dot(d?x))[:?index]
????????????u?s?v?=?np.linalg.svd(r?full_matrices=False)
????????????d[:?i]?=?u[:?0].T
????????????x[i?index]?=?s[0]?*?v[0?:]
????????return?d?x

????def?fit(self?y):
????????“““
????????KSVD迭代過程
????????“““
????????self._initialize(y)
????????for?i?in?range(self.max_iter):
????????????x?=?linear_model.orthogonal_mp(self.dictionary?y?n_nonzero_coefs=self.n_nonzero_coefs)
????????????e?=?np.linalg.norm(y?-?np.dot(self.dictionary?x))
????????????if?e?????????????????break
????????????self._update_dict(y?self.dictionary?x)

????????self.sparsecode?=?linear_model.orthogonal_mp(self.dictionary?y?n_nonzero_coefs=self.n_nonzero_coefs)
????????return?self.dictionary?self.sparsecode


if?__name__?==?‘__main__‘:
????im_ascent?=?scipy.misc.ascent().astype(np.float)
????ksvd?=?KSVD(300)
????dictionary?sparsecode?=?ksvd.fit(im_ascent)
????plt.figure()
????plt.subplot(1?2?1)
????plt.imshow(im_ascent)
????plt.subplot(1?2?2)
????plt.imshow(dictionary.dot(sparsecode))
????plt.show()

?屬性????????????大小?????日期????時間???名稱
-----------?---------??----------?-----??----

?????文件????1791013??2018-11-21?21:42??K-SVD算法python實現以及PPT原理講解(自制)\K-SVD??An?Algorithm?for?Designing?Overcomplete?Dictionaries?for?Sparse?Representation.pdf

?????文件???????2349??2018-12-16?13:41??K-SVD算法python實現以及PPT原理講解(自制)\k-SVD.py

?????文件????????150??2018-12-10?10:48??K-SVD算法python實現以及PPT原理講解(自制)\kmeans\center

?????文件???????2878??2018-12-10?10:28??K-SVD算法python實現以及PPT原理講解(自制)\kmeans\data.txt

?????文件???????4455??2018-12-10?10:53??K-SVD算法python實現以及PPT原理講解(自制)\kmeans\kmeans.py

?????文件???????1805??2018-12-10?10:48??K-SVD算法python實現以及PPT原理講解(自制)\kmeans\sub

?????文件????1998590??2018-12-17?10:29??K-SVD算法python實現以及PPT原理講解(自制)\SVD.pptx

?????目錄??????????0??2019-01-16?11:06??K-SVD算法python實現以及PPT原理講解(自制)\kmeans

?????目錄??????????0??2019-01-16?11:09??K-SVD算法python實現以及PPT原理講解(自制)

-----------?---------??----------?-----??----

??????????????3801240????????????????????9


評論

共有 條評論