91av视频/亚洲h视频/操亚洲美女/外国一级黄色毛片 - 国产三级三级三级三级

  • 大小: 1.62MB
    文件類型: .zip
    金幣: 2
    下載: 0 次
    發(fā)布日期: 2023-09-30
  • 語言: Python
  • 標(biāo)簽: cs231n??assigment1??

資源簡介

此資源是cs231n課程assigment1的完整代碼,包括knn,svm,softmax,two-layer-nets,feature五個(gè)小作業(yè),代碼中需要完成的python和ipython均已完成

資源截圖

代碼片段和文件信息

import?cPickle?as?pickle
import?numpy?as?np
import?os
from?scipy.misc?import?imread

def?load_CIFAR_batch(filename):
??“““?load?single?batch?of?cifar?“““
??with?open(filename?‘rb‘)?as?f:
????datadict?=?pickle.load(f)
????X?=?datadict[‘data‘]
????Y?=?datadict[‘labels‘]
????X?=?X.reshape(10000?3?32?32).transpose(0231).astype(“float“)
????Y?=?np.array(Y)
????return?X?Y

def?load_CIFAR10(ROOT):
??“““?load?all?of?cifar?“““
??xs?=?[]
??ys?=?[]
??for?b?in?range(16):
????f?=?os.path.join(ROOT?‘data_batch_%d‘?%?(b?))
????X?Y?=?load_CIFAR_batch(f)
????xs.append(X)
????ys.append(Y)????
??Xtr?=?np.concatenate(xs)
??Ytr?=?np.concatenate(ys)
??del?X?Y
??Xte?Yte?=?load_CIFAR_batch(os.path.join(ROOT?‘test_batch‘))
??return?Xtr?Ytr?Xte?Yte

def?load_tiny_imagenet(path?dtype=np.float32):
??“““
??Load?TinyImageNet.?Each?of?TinyImageNet-100-A?TinyImageNet-100-B?and
??TinyImageNet-200?have?the?same?directory?structure?so?this?can?be?used
??to?load?any?of?them.

??Inputs:
??-?path:?String?giving?path?to?the?directory?to?load.
??-?dtype:?numpy?datatype?used?to?load?the?data.

??Returns:?A?tuple?of
??-?class_names:?A?list?where?class_names[i]?is?a?list?of?strings?giving?the
????WordNet?names?for?class?i?in?the?loaded?dataset.
??-?X_train:?(N_tr?3?64?64)?array?of?training?images
??-?y_train:?(N_tr)?array?of?training?labels
??-?X_val:?(N_val?3?64?64)?array?of?validation?images
??-?y_val:?(N_val)?array?of?validation?labels
??-?X_test:?(N_test?3?64?64)?array?of?testing?images.
??-?y_test:?(N_test)?array?of?test?labels;?if?test?labels?are?not?available
????(such?as?in?student?code)?then?y_test?will?be?None.
??“““
??#?First?load?wnids
??with?open(os.path.join(path?‘wnids.txt‘)?‘r‘)?as?f:
????wnids?=?[x.strip()?for?x?in?f]

??#?Map?wnids?to?integer?labels
??wnid_to_label?=?{wnid:?i?for?i?wnid?in?enumerate(wnids)}

??#?Use?words.txt?to?get?names?for?each?class
??with?open(os.path.join(path?‘words.txt‘)?‘r‘)?as?f:
????wnid_to_words?=?dict(line.split(‘\t‘)?for?line?in?f)
????for?wnid?words?in?wnid_to_words.iteritems():
??????wnid_to_words[wnid]?=?[w.strip()?for?w?in?words.split(‘‘)]
??class_names?=?[wnid_to_words[wnid]?for?wnid?in?wnids]

??#?Next?load?training?data.
??X_train?=?[]
??y_train?=?[]
??for?i?wnid?in?enumerate(wnids):
????if?(i?+?1)?%?20?==?0:
??????print?‘loading?training?data?for?synset?%d?/?%d‘?%?(i?+?1?len(wnids))
????#?To?figure?out?the?filenames?we?need?to?open?the?boxes?file
????boxes_file?=?os.path.join(path?‘train‘?wnid?‘%s_boxes.txt‘?%?wnid)
????with?open(boxes_file?‘r‘)?as?f:
??????filenames?=?[x.split(‘\t‘)[0]?for?x?in?f]
????num_images?=?len(filenames)
????
????X_train_block?=?np.zeros((num_images?3?64?64)?dtype=dtype)
????y_train_block?=?wnid_to_label[wnid]?*?np.ones(num_images?dtype=np.int64)
????for?j?img_file?in?enumerate(filenames):
??????img_file?=?os.path.join(path?‘train‘?wnid?‘images‘?img_file)
??????img?=?imread(img_file)
??????if?img.ndim?==?2:
????????##?grayscale?file
????????img.shape?

?屬性????????????大小?????日期????時(shí)間???名稱
-----------?---------??----------?-----??----
?????文件????????6148??2017-03-22?00:20??.DS_Store
?????目錄???????????0??2017-03-19?11:22??cs231n\
?????文件????????6148??2017-03-22?00:20??cs231n\.DS_Store
?????文件???????????0??2016-01-10?03:41??cs231n\__init__.py
?????文件?????????105??2017-03-15?00:34??cs231n\__init__.pyc
?????目錄???????????0??2017-03-20?07:48??cs231n\classifiers\
?????文件?????????103??2016-01-10?03:41??cs231n\classifiers\__init__.py
?????文件?????????238??2017-03-15?00:34??cs231n\classifiers\__init__.pyc
?????文件????????9178??2017-03-15?02:36??cs231n\classifiers\k_nearest_neighbor.py
?????文件????????5501??2017-03-15?02:36??cs231n\classifiers\k_nearest_neighbor.pyc
?????文件????????6216??2017-03-15?07:18??cs231n\classifiers\linear_classifier.py
?????文件????????4580??2017-03-15?07:18??cs231n\classifiers\linear_classifier.pyc
?????文件????????4838??2017-03-15?07:07??cs231n\classifiers\linear_svm.py
?????文件????????2372??2017-03-15?07:18??cs231n\classifiers\linear_svm.pyc
?????文件???????12084??2017-03-20?07:38??cs231n\classifiers\neural_net.py
?????文件????????7273??2017-03-19?11:06??cs231n\classifiers\neural_net.pyc
?????文件????????3629??2017-03-20?07:48??cs231n\classifiers\softmax.py
?????文件????????2353??2017-03-15?08:18??cs231n\classifiers\softmax.pyc
?????文件????????5550??2016-01-10?03:41??cs231n\data_utils.py
?????文件????????5762??2017-03-15?00:34??cs231n\data_utils.pyc
?????文件????????4807??2016-01-10?03:41??cs231n\features.py
?????文件????????4779??2017-03-19?11:22??cs231n\features.pyc
?????文件????????3904??2017-03-19?10:45??cs231n\gradient_check.py
?????文件????????3824??2017-03-19?10:45??cs231n\gradient_check.pyc
?????文件????????1951??2016-01-10?03:41??cs231n\vis_utils.py
?????文件????????2517??2017-03-19?08:15??cs231n\vis_utils.pyc
?????文件??????354272??2017-03-20?07:58??features.ipynb
?????文件?????????412??2016-01-10?03:41??frameworkpython
?????文件??????419955??2017-03-15?08:08??knn.ipynb
?????文件???????69063??2017-03-15?08:30??softmax.ipynb
?????文件?????????113??2016-01-10?03:41??start_ipython_osx.sh
............此處省略2個(gè)文件信息

評論

共有 條評論

相關(guān)資源