資源簡(jiǎn)介
This book is your guide to fast gradient boosting in Python. You will discover the XGBoost Python library for gradient boosting and how to use it to develop
and evaluate gradient boosting models. In this book you will discover the techniques, recipes and skills with XGBoost that you can then bring to your own machine learning projects.
Gradient Boosting does have a some fascinating math under the covers, but you do not need to know it to be able to pick it up as a tool and wield it on important projects to deliver real value. From the applied perspective, gradient boosting is quite a shallow field and a motivated developer can quickly pick it up and start making very real and impactful contributions.

代碼片段和文件信息
#?First?XGBoost?model?for?Pima?Indians?dataset
from?numpy?import?loadtxt
from?xgboost?import?XGBClassifier
from?sklearn.model_selection?import?train_test_split
from?sklearn.metrics?import?accuracy_score
#?load?data
dataset?=?loadtxt(‘pima-indians-diabetes.csv‘?delimiter=““)
#?split?data?into?X?and?y
X?=?dataset[:0:8]
Y?=?dataset[:8]
#?split?data?into?train?and?test?sets
seed?=?7
test_size?=?0.33
X_train?X_test?y_train?y_test?=?train_test_split(X?Y?test_size=test_size?random_state=seed)
#?fit?model?on?training?data
model?=?XGBClassifier()
model.fit(X_train?y_train)
#?make?predictions?for?test?data
y_pred?=?model.predict(X_test)
predictions?=?[round(value)?for?value?in?y_pred]
#?evaluate?predictions
accuracy?=?accuracy_score(y_test?predictions)
print(“Accuracy:?%.2f%%“?%?(accuracy?*?100.0))
?屬性????????????大小?????日期????時(shí)間???名稱
-----------?---------??----------?-----??----
?????文件?????1236043??2017-12-04?00:19??xgboost_with_python.pdf
?????目錄???????????0??2017-12-04?00:19??code\
?????目錄???????????0??2017-12-04?00:19??code\chapter_08\
?????文件???????23279??2017-12-04?00:19??code\chapter_08\pima-indians-diabetes.csv
?????文件????????1120??2017-12-04?00:19??code\chapter_08\serialize_with_joblib.py
?????文件????????1121??2017-12-04?00:19??code\chapter_08\serialize_with_pickle.py
?????目錄???????????0??2017-12-04?00:19??code\chapter_06\
?????文件?????????578??2017-12-04?00:19??code\chapter_06\stratified_cross_validation.py
?????文件???????23279??2017-12-04?00:19??code\chapter_06\pima-indians-diabetes.csv
?????文件?????????777??2017-12-04?00:19??code\chapter_06\train_test_split.py
?????文件?????????547??2017-12-04?00:19??code\chapter_06\cross_validation.py
?????目錄???????????0??2017-12-04?00:19??code\chapter_07\
?????文件?????????422??2017-12-04?00:19??code\chapter_07\plot_tree-left-to-right.py
?????文件?????????395??2017-12-04?00:19??code\chapter_07\plot_tree.py
?????文件???????23279??2017-12-04?00:19??code\chapter_07\pima-indians-diabetes.csv
?????目錄???????????0??2017-12-04?00:19??code\chapter_09\
?????文件????????1518??2017-12-04?00:19??code\chapter_09\feature_selection.py
?????文件?????????443??2017-12-04?00:19??code\chapter_09\automatic_feature_importance.py
?????文件???????23279??2017-12-04?00:19??code\chapter_09\pima-indians-diabetes.csv
?????文件?????????484??2017-12-04?00:19??code\chapter_09\manual_feature_importance.py
?????目錄???????????0??2017-12-04?00:19??code\chapter_14\
?????文件????????1630??2017-12-04?00:19??code\chapter_14\tune_num_trees_and_depth.py
?????文件????????1408??2017-12-04?00:19??code\chapter_14\tune_trees.py
?????文件????????1409??2017-12-04?00:19??code\chapter_14\tune_depth.py
?????目錄???????????0??2017-12-04?00:19??code\chapter_15\
?????文件????????1658??2017-12-04?00:19??code\chapter_15\tune_learning_rate_and_num_trees.py
?????文件?????????343??2017-12-04?00:19??code\chapter_15\plot_performance.py
?????文件????????1434??2017-12-04?00:19??code\chapter_15\tune_learning_rate.py
?????目錄???????????0??2017-12-04?00:19??code\chapter_12\
?????文件?????????630??2017-12-04?00:19??code\chapter_12\check_num_threads.py
?????目錄???????????0??2017-12-04?00:19??code\chapter_05\
............此處省略23個(gè)文件信息
評(píng)論
共有 條評(píng)論