-
大小: 1.25KB文件類型: .zip金幣: 1下載: 0 次發(fā)布日期: 2024-05-11
- 語(yǔ)言: Python
- 標(biāo)簽: 神經(jīng)網(wǎng)絡(luò)??分類??網(wǎng)絡(luò)??
資源簡(jiǎn)介
神經(jīng)網(wǎng)絡(luò)用于分類
代碼片段和文件信息
#?=============神經(jīng)網(wǎng)絡(luò)用于分類=============
from?sklearn.neural_network?import?MLPClassifier
import?csv
from?sklearn.preprocessing?import?StandardScaler
from?sklearn.model_selection?import?train_test_split
from?sklearn.metrics?import?accuracy_score
from?sklearn.metrics?import?confusion_matrix
from?sklearn.metrics?import?classification_report
data=[]
traffic_feature=[]
traffic_target=[]
csv_file?=?csv.reader(open(‘data.csv‘))
for?content?in?csv_file:
????content=list(map(floatcontent))
????if?len(content)!=0:
????????data.append(content)
????????traffic_feature.append(content[0:6])
????????traffic_target.append(content[-1])
#print(‘data=‘data)
#print(‘traffic_feature=‘traffic_feature)
#print(‘traffic_target=‘traffic_target)
scaler?=?StandardScaler()?#?標(biāo)準(zhǔn)化轉(zhuǎn)換
scaler.fit(traffic_feature)??#?訓(xùn)練標(biāo)準(zhǔn)化對(duì)象
traffic_feature=?scaler.transform(traffic_feature)???#?轉(zhuǎn)換數(shù)據(jù)集
feature_train?feature_test?target_train?target_test?=?train_test_split(traffic_feature?traffic_target?test_size=0.3random_state=0)
#?神經(jīng)網(wǎng)絡(luò)輸入為2,第一隱藏層神經(jīng)元個(gè)數(shù)為5,第二隱藏層神經(jīng)元個(gè)數(shù)為2,輸出結(jié)果為2分類。
#?solver=‘lbfgs‘??MLP的求解方法:L-BFGS?在小數(shù)據(jù)上表現(xiàn)較好,Adam?較為魯棒,
#?SGD在參數(shù)調(diào)整較優(yōu)時(shí)會(huì)有最佳表現(xiàn)(分類效果與迭代次數(shù))SGD標(biāo)識(shí)隨機(jī)梯度下降。
clf?=??MLPClassifier(solver=‘lbfgs‘?alpha=1e-5hidden_layer_sizes=(3020)?random_state=1)#分類函數(shù)
clf.fit(feature_traintarget_train)
predict_results=clf.predict(feature_test)
print(accuracy_score(predict_results?target_test))
conf_mat?=?confusion_matrix(target_test?predict_results)
print(conf_matpredict_results)
print(classification_report(target_test?predict_results))
?屬性????????????大小?????日期????時(shí)間???名稱
-----------?---------??----------?-----??----
?????文件????????1809??2020-11-22?19:17??神經(jīng)網(wǎng)絡(luò)用于分類.py
?????文件?????????648??2020-11-13?13:58??data.csv
評(píng)論
共有 條評(píng)論