資源簡介
圖像處理中的低秩表示模型,實現對圖像的低秩和稀疏重構。
代碼片段和文件信息
function?[ZE]?=?lrra(XAlambda)
%?This?routine?solves?the?following?nuclear-norm?optimization?problem
%?which?is?more?general?than?“lrr.m“
%?min?|Z|_*+lambda*|E|_21
%?s.t.?X?=?AZ+E
%?inputs:
%????????X?--?D*N?data?matrix?D?is?the?data?dimension?and?N?is?the?number
%?????????????of?data?vectors.
%????????A?--?D*M?matrix?of?a?dictionary?M?is?the?size?of?the?dictionary
if?nargin<3
????lambda?=?1;
end
tol?=?1e-8;
maxIter?=?1e6;
[d?n]?=?size(X);
m?=?size(A2);
rho?=?1.1;
max_mu?=?1e30;
mu?=?1e-6;
atx?=?A‘*X;
inv_a?=?inv(A‘*A+eye(m));
%%?Initializing?optimization?variables
%?intialize
J?=?zeros(mn);
Z?=?zeros(mn);
E?=?sparse(dn);
Y1?=?zeros(dn);
Y2?=?zeros(mn);
%%?Start?main?loop
iter?=?0;
disp([‘initialrank=‘?num2str(rank(Z))]);
while?iter ????iter?=?iter?+?1;
????%update?J
????temp?=?Z?+?Y2/mu;
????[UsigmaV]?=?svd(temp‘econ‘);
????sigma?=?diag(sigma);
????svp?=?length(find(sigma>1/mu));
????if?svp>=1
????????sigma?=?sigma(1:svp)-1
評論
共有 條評論