資源簡介
Prepared by the multiple regression of cross-validation procedure

代碼片段和文件信息
function?[E]?=?crossval(XYexprseqs)
%???[E]?=?crossval(XYexprseqs)
%???[E]?=?crossval(XYexpr)
%
%?Function?for?cross-validation?of?linear?regression?models.?
%
%?Input?parameters:
%??-?X:?Data?matrix?(size?k?x?n)
%??-?Y:?Output?matrix?(size?k?x?m)
%??-?expr:?String?form?expression?resulting?in?F?given?X?and?Y
%??-?seqs:?How?many?cross-validation?rounds?(default?k)
%?Return?parameter:
%??-?E:?Validation?error?(corresponding?x‘s?not?applied?in?model)
%
%?Heikki?Hyotyniemi?Feb.2?2001
[kxn]?=?size(X);
[kym]?=?size(Y);
if?kx?~=?ky?disp(‘Incompatible?X?and?Y‘);?return;?
else?k?=?kx;?end
if?nargin?4
???seqs?=?k;
end
Xorig?=?X;
Yorig?=?Y;
E?=?zeros(size(Y));
seqlen?=?ceil(k/seqs);
for?i?=?1:seqs
???begin?=?(i-1)*seqlen+1;
???endin?=?min(i*seqlenk);
???X?=?Xorig([1:begin-1endin+1:k]:);
???Y?=?Yorig([1:begin-1endin+1:k]:);
???eval([‘F?=?‘expr‘;‘]);
???Xtest?=?Xorig(begin:endin:);
???Ytest?=?Yorig(begin:endin:);
???Yhat?=?Xtest*F;
???E(begin:endin:)?=?Yhat?-?Ytest;
end
?屬性????????????大小?????日期????時間???名稱
-----------?---------??----------?-----??----
?????文件???????1049??2010-03-22?15:23??編寫的多元回歸的交叉驗證程序.m
-----------?---------??----------?-----??----
?????????????????1049????????????????????1
- 上一篇:神經網絡預測模型
- 下一篇:一階倒立擺畢業論文終稿
評論
共有 條評論