資源簡介
具體說明請見 http://blog.csdn.net/apsvvfb/article/details/12651999

代碼片段和文件信息
function?[x_kP_k]=ekf_rn(fxPhzQR)
%?EKF???Extended?Kalman?Filter?for?nonlinear?dynamic?systems
%?[x?P]?=?ekf(fxPhzQR)?returns?state?estimate?x?and?state?covariance?P?
%?for?nonlinear?dynamic?system:
%???????????x_k+1?=?f(x_k)?+?w_k
%???????????z_k???=?h(x_k)?+?v_k
%?where?w?~?N(0Q)?meaning?w?is?gaussian?noise?with?covariance?Q
%???????v?~?N(0R)?meaning?v?is?gaussian?noise?with?covariance?R
%?Inputs:???f:?function?handle?for?f(x)
%???????????x:?“a?priori“?state?estimate
%???????????P:?“a?priori“?estimated?state?covariance
%???????????h:?fanction?handle?for?h(x)
%???????????z:?current?measurement
%???????????Q:?process?noise?covariance?
%???????????R:?measurement?noise?covariance
%?Output:???x:?“a?posteriori“?state?estimate
%???????????P:?“a?posteriori“?state?covariance
n?=?size(x1);
%Jacobians
f_derivative=@(x)[10-x(4)*sin(x(3))-x(5)*x(4)*cos(x(3))/2cos(x(3))-x(5)*sin(x(3))/2x(4)*sin(x(3))/2;
????01x(4)*cos(x(3))-x(5)*x(4)*sin(x(3))/2sin(x(3))+x(5)*cos(x(3))/2x(4)*cos(x(3))/2;
????00101;
????00010;
????00001;];
F?=?f_derivative(x);
H?=?[1?0?0?0?0;0?1?0?0?0];
%?predict
x1?=?f(x);
P?=?F*P*F‘+Q;?
%update
Y?=?z?-?h(x1);
S?=?H*P*H‘?+?R;
K?=?P*H‘/S;
x_k?=?x1?+?K*Y;
P_k?=?(eye(n)?-?K*H)*P;
?屬性????????????大小?????日期????時間???名稱
-----------?---------??----------?-----??----
?????文件???????1275??2013-10-12?14:36??ekf_rn.m
?????文件???????5741??2013-10-15?13:22??test2_20101011.m
?????文件??????15601??2013-10-14?09:16??曲線.png
?????文件??????12707??2013-10-14?09:16??曲線2.png
?????文件??????12194??2013-10-14?09:17??直線.png
-----------?---------??----------?-----??----
????????????????47518????????????????????5
評論
共有 條評論