資源簡(jiǎn)介
根據(jù)Ozaktas1996年的文章《Digital Computation of the Fractional Fourier Transform》編寫的分?jǐn)?shù)階傅里葉變換程序。
代碼片段和文件信息
function?y?=?fracft(x?a)
%?fracft?--?compute?the?fractional?Fourier?transform
%
%??Usage
%????y?=?fracft(x?a)
%
%??Inputs
%????x?????signal?vector?must?have?an?odd?length?(to?have?a?center?point)
%????a?????fraction.?a=1?corresponds?to?the?Fourier?transform?and?a=4
%??????????is?an?identity?transform.
%
%??Outputs
%????y?????the?fractional?Fourier?transform
%
%?Example:
%???x?=?chirplets(63[1?48?pi/2?0?sqrt(63/4/pi)]);
%???for?i=0:0.25:4
%?????y?=?fracft(xi);?wigner1(y);?axis?square;?pause
%???end
%
%?Algorithm?taken?from?H.?M.?Ozaktas?et?al.?Digital?Computation?of?the
%?Fractional?Fourier?Transform?IEEE?Trans.?Signal?Processing?September
%?1996.
?
%?Copyright?(C)?--?see?DiscreteTFDs/Copyright
?
error(nargchk(2?2?nargin));
?
x?=?x(:);
N?=?length(x);
M?=?(N-1)/2;
?
if?(rem(N2)==0)
??error(‘signal?length?must?be?odd‘)
end
?
%?do?special?cases
a?=?mod(a4);
- 上一篇:matpower潮流計(jì)算
- 下一篇:matlab 樸素貝葉斯算法 iris
評(píng)論
共有 條評(píng)論