資源簡(jiǎn)介
很不錯(cuò)的matlab代碼,針對(duì)于做EEG的運(yùn)動(dòng)想象的CSP分解算法和特征選取,代碼注釋很清楚,拿到手就可以用,結(jié)合數(shù)據(jù)集。

代碼片段和文件信息
function?features?=?extractCSPFeatures(EEGSignals?CSPMatrix?nbFilterPairs)
%extract?features?from?an?EEG?data?set?using?the?Common?Spatial?Patterns?(CSP)?algorithm
%
%Input:
%EEGSignals:?the?EEGSignals?from?which?extracting?the?CSP?features.?These?signals
%are?a?structure?such?that:
%???EEGSignals.x:?the?EEG?signals?as?a?[Ns?*?Nc?*?Nt]?Matrix?where
%???????Ns:?number?of?EEG?samples?per?trial
%???????Nc:?number?of?channels?(EEG?electrodes)
%???????nT:?number?of?trials
%???EEGSignals.y:?a?[1?*?Nt]?vector?containing?the?class?labels?for?each?trial
%???EEGSignals.s:?the?sampling?frequency?(in?Hz)
%CSPMatrix:?the?CSP?projection?matrix?learnt?previously?(see?function?learnCSP)
%nbFilterPairs:?number?of?pairs?of?CSP?filters?to?be?used.?The?number?of
%???features?extracted?will?be?twice?the?value?of?this?parameter.?The
%???filters?selected?are?the?one?corresponding?to?the?lowest?and?highest
%???eigenvalues
%
%Output:
%features:?the?features?extracted?from?this?EEG?data?set?
%???as?a?[Nt?*?(nbFilterPairs*2?+?1)]?matrix?with?the?class?labels?as?the
%???last?column???
%initializations
nbTrials?=?size(EEGSignals.x3);
features?=?zeros(nbTrials?2*nbFilterPairs+1);
Filter?=?CSPMatrix([1:nbFilterPairs?(end-nbFilterPairs+1):end]:);
%extracting?the?CSP?features?from?each?trial
for?t=1:nbTrials????
????%projecting?the?data?onto?the?CSP?filters????
????projectedTrial?=?Filter?*?EEGSignals.x(::t)‘;????
????
????%generating?the?features?as?the?log?variance?of?the?projected?signals
????variances?=?var(projectedTrial02);????
????for?f=1:length(variances)
????????features(tf)?=?log(variances(f));
????end
????features(tend)?=?EEGSignals.y(t);????
end
?屬性????????????大小?????日期????時(shí)間???名稱
-----------?---------??----------?-----??----
?????文件???????1708??2018-04-04?16:03??extractCSPFeatures.m
?????文件???????2015??2018-03-29?10:30??learnCSP.m
-----------?---------??----------?-----??----
?????????????????3723????????????????????2
評(píng)論
共有 條評(píng)論