資源簡介
這是一份matlab實現的自適應卡爾曼濾波器的代碼,自適應卡爾曼的用途很廣,這是一個代碼包。

代碼片段和文件信息
close?all;
normMat?=?@(k)?(?k?-?ones(size(k))*min(k(:))?)?./?(max(k(:))-min(k(:)));
n?=?0;
xtick?=?len(sampleSizes);
ytick?=?len(alphaSteps);
xticklab?=?{};
yticklab?=?{};
for?i?=?1:length(sampleSizes)
????xticklab(i)?=?{num2str(sampleSizes(i))};
end
for?i?=?1:length(alphaSteps)
????yticklab(i)?=?{num2str(alphaSteps(i))};
end
%%
n?=?n?+?1;
figure(n)
subplot(121)
imagesc(xCol.mean)
colormap(flipud(summer))
colorbar
title(‘Total?position?error‘)
xlabel(‘Sample?Size‘)
ylabel(‘Alpha^2?step‘)
set(gca‘XTick‘xtick)
set(gca‘XTickLabel‘?xticklab)
set(gca‘YTick‘ytick)
set(gca‘YTickLabel‘?yticklab)
grid?on;
subplot(122)
imagesc(xCol.std)
colormap(flipud(summer))
colorbar
title(‘Position?estimate?standard?dev.‘)
xlabel(‘Sample?Size‘)
ylabel(‘Alpha^2?step‘)
set(gca‘XTick‘xtick)
set(gca‘XTickLabel‘?xticklab)
set(gca‘YTick‘ytick)
set(gca‘YTickLabel‘?yticklab)
grid?on;
%%
n?=?n?+?1;
figure(n)
subplot(121)
imagesc(sCol.mean)
colormap(flipud(summer))
colorbar
title(‘Mean?S?error?squared‘)
xlabel(‘Sample?Size‘)
ylabel(‘Alpha^2?step‘)
set(gca‘XTick‘xtick)
set(gca‘XTickLabel‘?xticklab)
set(gca‘YTick‘ytick)
set(gca‘YTickLabel‘?yticklab)
grid?on;
subplot(122)
imagesc(sCol.std)
colormap(flipud(summer))
colorbar
title(‘STD.?S?error?squared‘)
xlabel(‘Sample?Size‘)
ylabel(‘Alpha^2?step‘)
set(gca‘XTick‘xtick)
set(gca‘XTickLabel‘?xticklab)
set(gca‘YTick‘ytick)
set(gca‘YTickLabel‘?yticklab)
grid?on;
%%
n?=?n?+?1;
figure(n)
subplot(121)
imagesc(alphaCol.mean)
colormap(flipud(summer))
colorbar
title(‘Total?alpha^2?error‘)
xlabel(‘Sample?Size‘)
ylabel(‘Alpha^2?step‘)
set(gca‘XTick‘xtick)
set(gca‘XTickLabel‘?xticklab)
set(gca‘YTick‘ytick)
set(gca‘YTickLabel‘?yticklab)
subplot(122)
imagesc(alphaCol.std)
colormap(flipud(summer))
colorbar
title(‘Alpha^2?error?std.‘)
xlabel(‘Sample?Size‘)
ylabel(‘Alpha^2?step‘)
set(gca‘XTick‘xtick)
set(gca‘XTickLabel‘?xticklab)
set(gca‘YTick‘ytick)
set(gca‘YTickLabel‘?yticklab)
grid?on;
%?%%
%?
%?n?=?n+1?;
%?figure(n)
%?subplot(211)
%?bar(len(windowSizes)?ones(1length(windowSizes))-normMat(colStrue))
%?title(‘S?vs.?true?S‘)
%?xlabel(‘Sample?size‘)
%?ylabel(‘Normalised?Correctness‘)
%?
%?set(gca‘XTick‘len(windowSizes))
%?set(gca?‘XTickLabel‘?{‘2‘?‘3‘?‘4‘?‘5‘?‘7‘?‘10‘?‘15‘?‘20‘?‘25‘?‘30‘?‘40‘?‘50‘})
%?%set(gca‘XTickLabel‘?{‘1.1‘?‘1.25‘?‘1.5‘?‘1.75‘?‘2‘?‘2.25‘?‘2.5‘?‘3‘?‘4‘?‘5‘?‘6‘?‘7‘?‘8‘?‘9‘?‘10‘?‘15‘?‘20‘?‘25‘?‘50‘})
%?
%?
%?subplot(212)
%?bar(len(windowSizes)?ones(1length(windowSizes))-normMat(colinno))
%?title(‘Total?Innovation‘)
%?xlabel(‘Sample?size‘)
%?ylabel(‘Normalised?Correctness‘)
%?
%?set(gca‘XTick‘len(windowSizes))
%?set(gca?‘XTickLabel‘?{‘2‘?‘3‘?‘4‘?‘5‘?‘7‘?‘10‘?‘15‘?‘20‘?‘25‘?‘30‘?‘40‘?‘50‘})
%set(gca‘XTickLabel‘?{‘1.1‘?‘1.25‘?‘1.5‘?‘1.75‘?‘2‘?‘2.25‘?‘2.5‘?‘3‘?‘4‘?‘5‘?‘6‘?‘7‘?‘8‘?‘9‘?‘10‘?‘15‘?‘20‘?‘25‘?‘50‘})
?屬性????????????大小?????日期????時間???名稱
-----------?---------??----------?-----??----
?????目錄???????????0??2017-02-21?11:09??Adaptivator-master\
?????文件??????????19??2017-02-21?11:09??Adaptivator-master\.gitignore
?????文件??????????38??2017-02-21?11:09??Adaptivator-master\README.md
?????目錄???????????0??2017-02-21?11:09??Adaptivator-master\simsuite\
?????文件????????2658??2017-02-21?11:09??Adaptivator-master\simsuite\colplot.asv
?????文件????????2935??2017-02-21?11:09??Adaptivator-master\simsuite\colplot.m
?????文件????????1096??2017-02-21?11:09??Adaptivator-master\simsuite\genSig.m
?????文件????????1508??2017-02-21?11:09??Adaptivator-master\simsuite\kf.asv
?????文件????????1532??2017-02-21?11:09??Adaptivator-master\simsuite\kf.m
?????文件????????1440??2017-02-21?11:09??Adaptivator-master\simsuite\mc.asv
?????文件????????1440??2017-02-21?11:09??Adaptivator-master\simsuite\mc.m
?????文件????????2285??2017-02-21?11:09??Adaptivator-master\simsuite\mcplot.m
?????文件????????2946??2017-02-21?11:09??Adaptivator-master\simsuite\sims.asv
?????文件????????3106??2017-02-21?11:09??Adaptivator-master\simsuite\sims.m
?????文件????????2426??2017-02-21?11:09??Adaptivator-master\simsuite\tanisEst.m
?????文件??????????70??2017-02-21?11:09??Adaptivator-master\simsuite\test.m
- 上一篇:V-M雙閉環直流可逆調速建模與仿真課設
- 下一篇:二維數據擬合算法
評論
共有 條評論