資源簡介
vc下用復(fù)化梯形積分法和復(fù)化Simpson積分法以及Gauss-Legendre求積法求解Fredholm積分方程,并配有MATLAB的測試程序

代碼片段和文件信息
#include?“Calculate.h“
//#include?“GaussRemove.h“
//#include?“stdio.h“
double?ee?=?0.0000000001;
long?MaxN?=?1000; //最大節(jié)點(diǎn)數(shù)
void?main()
{
double?e?=?0;
int?n; //初始節(jié)點(diǎn)個(gè)數(shù)
double?*?pd_Result?=?new?double?[1]; //u(xi)的結(jié)果
//復(fù)化梯形法初始n?=?32
n?=?32?;
do?
{
n?=?n*2;
if?(?n?>?MaxN)
{
n?=?n/2;
break;
}
delete?[]pd_Result?;
pd_Result?=?FormulaTrapezia(ne);
}?
while(?e?>=?ee);
? OutPutResult(pd_Resultn);
cout<<“The?number?of?FormulaTrapezia?is?“<
cout<<“The?error?of?FormulaTrapezia?is:“;
cout<
//復(fù)Simpson法初始n?=?32
n?=?32?;
do?
{
n?=?n*2;
if?(?n?>?MaxN)
{
n?=?n/2;
break;
}
delete?[]pd_Result?;
pd_Result?=?FormulaSimpson(ne);
}?
while(?e?>=?ee);
? OutPutResult(pd_Resultn);
cout<<“The?number?of?FormulaSimpson?is?“<
cout<<“The?error?of?FormulaSimpson?is:“;
cout<
//Gauss積分法
n?=?7;
pd_Result?=?FormulaGauss(ne);
?? ShowVector(pd_Resultn);
cout<<“The?error?of?FormulaGauss?is:“;
cout< }
?屬性????????????大小?????日期????時(shí)間???名稱
-----------?---------??----------?-----??----
?????文件??????54784??2008-12-24?16:43??Calculate.opt
?????文件???????2561??2008-12-19?09:27??GaussRemove.h
?????文件???????1198??2008-12-22?19:41??Calculate.plg
?????文件???????1281??2008-12-22?19:41??Calculate.cpp
?????文件???????3567??2008-12-17?21:05??Calculate.dsp
?????文件????????543??2008-12-15?19:55??Calculate.dsw
?????文件???????4940??2008-12-22?19:38??Calculate.h
?????文件??????50176??2008-12-24?16:43??Calculate.ncb
-----------?---------??----------?-----??----
???????????????119050????????????????????8
- 上一篇:現(xiàn)代控制理論仿真建模
- 下一篇:matlab讀取視頻背景程序
評論
共有 條評論