資源簡介
貝葉斯估計(Bayesian estimation)是利用貝葉斯定理結合新的證據及以前的先驗概率,來得到新的概率。它提供了一種計算假設概率的方法,基于假設的先驗概率、給定假設下觀察到不同數據的概率以及觀察到的數據本身。
代碼片段和文件信息
function?[mu?sigma]?=?Bayesian_parameter_est(train_patterns?train_targets?sigma)
train_patterns=[35?53?55?46?72?76?49;
????46?67?65?63?67?80?56;
????49?57?60?50?70?75?60;
????44?55?57?59?76?78?54];
train_targets=[52?63?53?55?71?91?59;37?50?52?61?63?76?45];
%?Estimate?the?mean?using?the?Bayesian?parameter?estimation?for?Gaussian?mixture?algorithm估計平均值,用貝葉斯參數的估計作為簡縮高斯函數集算法
%?Inputs:
%? patterns -?Train?patterns
% targets -?Train?targets
% sigma -?The?covariance?matrix?for?each?class?每一類矩陣的協方差
%
%?Outputs
% mu -?The?estimated?mean?平均值
% sigma -?The?estimated?covariances?協方差
[NM]?=?size(train_patterns);
Uclasses?=?unique(train_targets);
Nuc?=?length(Uclasses);
%Find?initial?estimates?for?mu?and?sigma?for?the?classes
mu0 =?zeros(Nuc?N);
sigma0?=?zeros(Nuc?N?N);
for?i?=?1:Nuc
????indices =?find(train_targets?==?Uclasses(i));
????mu0(i:)?=?mean(train_patterns(:indices)‘);
????sigma0(i::)?
- 上一篇:MATLAB GUI語音信號特征提取
- 下一篇:16QAM調制系統仿真
評論
共有 條評論