91av视频/亚洲h视频/操亚洲美女/外国一级黄色毛片 - 国产三级三级三级三级

資源簡介

利用小波分解對含噪聲圖像進行閾值去噪,重構得到新圖像。小波去噪算法實現,非常好用..

資源截圖

代碼片段和文件信息

%?denoise1.m
%---本程序是基于WaveLab802平臺作的。
%---包括以下方法:
%?VisuShrink方法、SUREShrink方法、BayesShrink方法、AdaptBayesShrink方法、LAWMLShrink方法。
%---運行方法:
%?將某方法對應行的代碼前的“%”去掉,而其他方法前一律都加“%”屏蔽掉。
%?噪聲方差大小和小波可以自行設定

I=imread(‘lena.bmp‘);%讀取圖像數據
n=length(I);
figure;
imshow(I256);%顯示原圖像

%產生噪聲圖像
theta_noise=20;%噪聲方差(可設為其他值)-------------------------------------------
noise=GWN2(length(I)theta_noise);
Inoise=double(I)+noise;
figure;
imshow(Inoise[]);%顯示帶噪圖像

%小波濾波器選擇
qmf=MakeONFilter(‘Daubechies‘8);%Daubechies8小波(可設為其他小波)-----------------
L=5;%分解層數=log2(n)-L
[InoiseNormcoef]?=?NormNoise2(Inoiseqmf);%歸一化
wc=FWT2_PO(InoiseNormLqmf);
%--------------------------VisuShrink方法-----------------------------------------
%wc?=?MultiVisu2(wcL);
%---------------------------------------------------------------------------------

%--------------------------SUREShrink方法-----------------------------------------
wc?=?MultiSURE2(wcL);
%---------------------------------------------------------------------------------

%--------------------------BayesShrink方法-----------------------------------------
%wc?=?MultiBayes2(wcL);
%---------------------------------------------------------------------------------

%--------------------------AdaptBayesShrink方法-----------------------------------
%wc?=?AdaptShrink2(wcL);
%---------------------------------------------------------------------------------

%--------------------------LAWMLShrink方法----------------------------------------
%wc?=?LAWMLShrink2(wcL);
%---------------------------------------------------------------------------------

IdenoiseNorm=?IWT2_PO(wcLqmf);
Idenoise=IdenoiseNorm./coef;

%輸出去噪后的MSE和PSNR值
MSE2_=MSE2(double(I)Idenoise)
PSNR2=PSNR(MSE2_)
figure;
imshow(Idenoise[]);%顯示恢復圖像

?屬性????????????大小?????日期????時間???名稱
-----------?---------??----------?-----??----

?????文件????????131??2003-11-24?20:47??小波去噪\baseOnLevent\BayesShrink.m

?????文件???????1896??2003-10-27?16:19??小波去噪\baseOnLevent\BivaShrink123.m

?????文件???????1699??2003-10-27?10:17??小波去噪\baseOnLevent\BivaShrink13.m

?????文件???????1792??2003-11-24?20:42??小波去噪\baseOnLevent\BivaShrink23.m

?????文件???????1489??2003-11-24?20:48??小波去噪\baseOnLevent\denoising_BayesShrink.m

?????文件???????1422??2003-11-24?20:49??小波去噪\baseOnLevent\denoising_LAWMLShrink.m

?????文件???????2537??2003-11-24?20:48??小波去噪\baseOnLevent\dt_BayesShrink.m

?????文件???????2779??2003-11-24?20:53??小波去噪\baseOnLevent\dt_BivaShrink123.m

?????文件???????2784??2003-11-24?20:53??小波去噪\baseOnLevent\dt_BivaShrink13.m

?????文件???????2914??2003-11-24?20:53??小波去噪\baseOnLevent\dt_BivaShrink23.m

?????文件???????1845??2003-11-24?20:51??小波去噪\baseOnLevent\dt_LAWMLShrink.m

?????文件????????244??2003-11-24?20:50??小波去噪\baseOnLevent\LAWMLShrink.m

?????文件????????188??2003-11-24?21:37??小波去噪\baseOnLevent\readme.txt

?????文件????????394??2003-11-24?20:43??小波去噪\baseOnLevent\trishrink1.m

?????文件???????3592??2003-11-24?21:23??小波去噪\baseOnWaveLab\AdaptShrink2.m

?????文件????????412??2003-10-23?21:12??小波去噪\baseOnWaveLab\BayesThresh2.m

?????文件????????349??2003-03-25?15:16??小波去噪\baseOnWaveLab\dyad2HH.m

?????文件????????357??2003-03-25?15:23??小波去噪\baseOnWaveLab\dyad2HL.m

?????文件????????355??2003-03-25?15:24??小波去噪\baseOnWaveLab\dyad2LH.m

?????文件????????329??2003-05-08?10:48??小波去噪\baseOnWaveLab\dyad2LL.m

?????文件????????325??2003-03-18?21:40??小波去噪\baseOnWaveLab\DyadHi.m

?????文件????????288??2003-03-18?21:42??小波去噪\baseOnWaveLab\DyadLo.m

?????文件???????2881??2003-11-24?21:24??小波去噪\baseOnWaveLab\LAWMLShrink2.m

?????文件????????684??2003-10-23?20:56??小波去噪\baseOnWaveLab\MultiBayes2.m

?????文件????????698??2003-04-04?09:15??小波去噪\baseOnWaveLab\MultiSURE2.m

?????文件????????728??2003-10-23?16:51??小波去噪\baseOnWaveLab\MultiVisu2.m

?????文件????????160??2003-11-24?21:34??小波去噪\baseOnWaveLab\readme.txt

?????文件????????493??2003-10-25?19:33??小波去噪\baseOnWaveLab\SUREThresh2.m

?????文件????????690??2003-10-25?11:39??小波去噪\baseOnWaveLab\ValSUREThresh2.m

?????文件????????654??2003-10-23?16:58??小波去噪\baseOnWaveLab\VisuThresh2.m

............此處省略8個文件信息

評論

共有 條評論