資源簡介
遺傳算法改進BP人工神經網絡,有利于大家將模式識別精度提高。
代碼片段和文件信息
%%?程序說明
%?主程序:ga_bp.m
%?適應度函數:gabpEval.m
%?編解碼子函數:gadecod.m
%?使用前需安裝gaot工具箱,上述三個文件需放在同一文件夾中且將該文件夾
%?設置為當前工作路徑
%?運行程序時只需運行主程序ga_bp.m即可
%?此程序僅為示例,針對其他的問題,只需將數據修改即可,但需注意變量名
%?保持一致,尤其是全局變量修改時(在gadecod.m和gabpEval.m中也要修改)
%?版權歸MATLAB中文論壇所有,轉載請注明
%%?清除環境變量
clear?all
clc
warning?off?
nntwarn?off
%%?聲明全局變量
global?p?????%?訓練集輸入數據
global?t?????%?訓練集輸出數據
global?R?????%?輸入神經元個數
global?S2????%?輸出神經元個數
global?S1????%?隱層神經元個數
global?S?????%?編碼長度
S1=25;
%%?導入數據
%?訓練數據
day=[0.9363?-0.9698?-0.9907?-0.9562?-0.9507?0.9363?-0.9164?0.9045?0.8918;
?-0.9358?-0.9751?0.9821?-0.9544?-0.9469?0.9426?0.9182?0.8967?-0.8841;
0.9516?-0.9781?-0.9744?-0.9525?0.9509?0.9368?0.9082?-0.8903?-0.8665;
?-0.9480?-0.9795?-0.9796?-0.9507?0.9509?0.9300?-0.9075?-0.8902?-0.8671;
?-0.9433?-0.9923?-0.9812?-0.9596?-0.9406?-0.9230?0.9071?-0.8864?-0.8547;
?-0.9424?1.0000?-0.9800?-0.9514?0.9349?-0.9089?0.9206?-0.8780?-0.8414;
0.9355?-0.9878?-0.9737?-0.9499?0.9337?0.9084?-0.9072?-0.8745?-0.8332];
%?數據歸一化
[daynmindaymaxday]=premnmx(day);
%?輸入和輸出樣本
p=dayn(:1:8);
t=dayn(:2:9);
%?測試數據
k=[0.9435?0.9796?-0.9706?-0.9552?-0.9298?-0.9130?-0.9003?0.8708?0.8234;
????-0.9358?-0.9751?0.9821?-0.9544?-0.9469?0.9426?0.9182?0.8967?-0.8841;
0.9516?-0.9781?-0.9744?-0.9525?0.9509?0.9368?0.9082?-0.8903?-0.8665;
?-0.9480?-0.9795?-0.9796?-0.9507?0.9509?0.9300?-0.9075?-0.8902?-0.8671;
?-0.9433?-0.992
- 上一篇:一維二維擴散模型Matlab代碼
- 下一篇:任意旋轉矢量到坐標變換矩陣的轉換
評論
共有 條評論