資源簡介
Fisher線性判別實(shí)驗(yàn),.m文件,各行代碼功能備注明確,有利于學(xué)習(xí),matlab直接運(yùn)行,數(shù)據(jù)更改即可用于其他類別實(shí)驗(yàn)分析。
代碼片段和文件信息
w1?=?[-0.4???0.58???0.089;
????-0.31??0.27??-0.04;
????-0.38??0.055?-0.035;
????-0.15??0.53???0.011;
????-0.35??0.47???0.034;
?????0.17??0.69???0.1;
????-0.011?0.55??-0.18;
????-0.27??0.61???0.12;
????-0.065?0.49???0.0012;
????-0.12??0.054?-0.063];
w2?=?[?0.83???1.6??-0.014;
?????1.1????1.6???0.48;
????-0.44??-0.41??0.32;
?????0.047?-0.45??1.4;
?????0.28???0.35??3.1;
????-0.39??-0.48??0.11;
?????0.34??-0.079?0.14;
????-0.3???-0.22??2.2;
?????1.1????1.2??-0.46;
?????0.18??-0.11?-0.49];
xx1?=?[-0.7????0.58??0.089];
xx2?=?[0.047??-0.4???1.04];
?%求w1?w2均值m1?m2和總類內(nèi)離散度ws
?m1?=?mean(w1)‘;
?m2?=?mean(w2)‘;
?n1?=?size(w11);
?n2?=?size(w21);
?s1?=?cov(w1)*(n1-1);??%類內(nèi)離散度矩陣就是類型方差矩陣,但是這里要注意一點(diǎn):
?s2?=?cov(w2)*(n2-1);??%matlab中算的協(xié)方差被縮小了n-1倍,所以要乘(n-1)
?sw?=?s1?+?s2;???????
?w??=?inv(sw)*(m1-m2);?
?ym1?=?mean(w‘*m1);?????%一維Y空間內(nèi),各類樣品均值
?ym2?
評論
共有 條評論