資源簡介
基于Fisher準則實現手寫數字識別的matlab實現及課程報告)

代碼片段和文件信息
function?Result=BayesLeastError(data)
clc;
load?template?pattern;
%將數字特征轉化為0、1兩個數值表示
for?i=1:10
????for?j=1:25
????????for?k=1:pattern(1i).num
????????????if?pattern(1i).feature(jk)>0.1
???????????????pattern(1i).feature(jk)=1;
????????????else
????????????????pattern(1i).feature(jk)=0;
????????????end
????????end
????end
end
[pc_templatepc_data]=pcapro(data);??%主成分分析
temp=0;
for?i=1:10
????pattern(1i).feature=pc_template(:temp+1:temp+pattern(1i).num);
????temp=temp+pattern(1i).num;
end
%求協方差矩陣、協方差矩陣的逆矩陣、協方差矩陣的行列式
s_cov=[];
s_inv=[];
s_det=[];
for?i=1:10
????s_cov(i).data=cov(pattern(1i).feature‘);
????s_inv(i).data=inv(s_cov(i).data);
????s_det(i)=det(s_cov(i).data);
end
%求先驗概率
sum=0;
pw=[];??%P(wi)---先驗概率
for?i=1:10
????sum=sum+pattern(1i).num;
end
for?i=1:10
????pw(i)=pattern(1i).num/sum;
end
%求判別函數
h=[];???%h()---差別函數
mean_data=[];????%mean_data---每類樣品特征向量的均值
for?i=1:10
????mean_data(i).data=mean(pattern(1i).feature‘)‘;
end
%判別函數
for?i=1:10
???h(i)=(pc_data-mean_data(i).data)‘*s_inv(i).data*(pc_data-mean_data(i).data)...
????????*(-0.5)+log(pw(i))+log(abs(s_det(i)))*(-0.5);
end
[maxvalmaxpos]=max(h);
Result=maxpos-1;
end
????
????
????
????
????
????
????
????
????
????
????
????
????
????
????
????
????
????
????
????
????
????
????
????
????
????
????
????
????
????
????
????
????
????
????
????
????
????
????
????
????
????
????
????
????
????
????
????
????
????
????
????
????
????
????
????
????
????
????
????
????
?屬性????????????大小?????日期????時間???名稱
-----------?---------??----------?-----??----
?????目錄???????????0??2018-01-17?19:44??基于Fisher準則實現手寫數字識別\
?????文件????????1674??2013-11-03?11:58??基于Fisher準則實現手寫數字識別\BayesLeastError.m
?????文件?????????991??2013-11-03?11:58??基于Fisher準則實現手寫數字識別\BayesTwoValue.m
?????文件????????7705??2016-11-13?18:13??基于Fisher準則實現手寫數字識別\Classification.fig
?????文件???????16240??2016-11-13?18:13??基于Fisher準則實現手寫數字識別\Classification.m
?????文件?????????714??2007-12-26?15:28??基于Fisher準則實現手寫數字識別\Fisher.m
?????文件?????????954??2016-11-12?20:17??基于Fisher準則實現手寫數字識別\FisherClassifier.m
?????文件?????????748??2013-11-03?11:58??基于Fisher準則實現手寫數字識別\GetFeature.m
?????文件?????????745??2013-11-03?11:58??基于Fisher準則實現手寫數字識別\pcapro.m
?????文件??????211285??2016-11-13?19:44??基于Fisher準則實現手寫數字識別\template.mat
?????文件??????435005??2018-01-17?19:44??基于Fisher準則實現手寫數字識別\基于Fisher準則實現手寫數字識別.docx
?????文件????????4642??2016-11-13?19:45??基于Fisher準則實現手寫數字識別\當前手寫數字.bmp
- 上一篇:KPCA用于TE過程的程序matlab)
- 下一篇:Matlab自回歸分析程序
評論
共有 條評論