91av视频/亚洲h视频/操亚洲美女/外国一级黄色毛片 - 国产三级三级三级三级

  • 大小: 11.36MB
    文件類型: .zip
    金幣: 1
    下載: 0 次
    發布日期: 2023-07-02
  • 語言: Matlab
  • 標簽: CNN??matlab??

資源簡介

CNN卷積神經網絡實現,Matlab仿真,識別手寫數字集。

資源截圖

代碼片段和文件信息

%%%??matlab實現LeNet-5
%%%??作者:xd.wp
%%%??時間:2016.10.14??20:29
%%?程序說明
%??????????1、池化(pooling)采用平均2*2
%??????????2、網絡結點數說明:
%???????????????????????????輸入層:28*28
%???????????????????????????第一層:24*24(卷積)*6
%???????????????????????????第二層:12*12(pooling)*6
%???????????????????????????第三層:8*8(卷積)*16
%???????????????????????????第四層:4*4(pooling)*16
%???????????????????????????第五層:全連接40
%???????????????????????????第六層:全連接10
%??????????3、網絡訓練部分采用800個樣本,檢驗部分采用100個樣本
clear?all;clc;
%%?網絡初始化
layer_c1_num=6;
layer_c2_num=16;
%權值調整步進
yita=0.05;
bias=1;
%卷積核初始化
[kernel_c1kernel_c2]=init_kernel(layer_c1_numlayer_c2_num);
%pooling核初始化
pooling_a=ones(22)/4;
%全連接層的權值
weight_full_1=rand(1640)/sqrt(40);
weight_full_2=rand(4010)/sqrt(10);
weight_c2=rand(616)/10;
weight_arr2num=rand(44layer_c2_num)/sqrt(16);
disp(‘網絡初始化完成......‘);
%%?開始網絡訓練
disp(‘開始網絡訓練......‘);
for?n=10:20
????for?m=0:9
????????%讀取樣本
????????train_data=imread(strcat(num2str(m)‘_‘num2str(n)‘.bmp‘));
????????train_data=double(train_data);
????????%?????????%?歸一化
????????%?????????train_data=train_data/sqrt(sum(sum(train_data.^2)));
????????%標簽label設置
????????label_temp=-ones(110);
????????label_temp(1m+1)=1;
????????label=label_temp;
????????for?iter=1:10
????????????%前向傳遞進入卷積層1
????????????for?k=1:layer_c1_num
????????????????state_c1(::k)=convolution(train_datakernel_c1(::k));
????????????????%進入pooling1
????????????????state_s1(::k)=pooling(state_c1(::k)pooling_a);
????????????end
????????????%進入卷積層2
????????????[state_c2state_c2_temp]=convolution_c2(state_s1kernel_c2weight_c2);
????????????%進入pooling層2
????????????for?k=1:layer_c2_num
????????????????state_s2_temp1(::k)=pooling(state_c2(::k)pooling_a);
????????????end
????????????%將矩陣變成數
????????????for?k=1:layer_c2_num
????????????????state_s2_temp2(1k)=sum(sum(state_s2_temp1(::k).*weight_arr2num(::k)))+bias;
????????????????state_s2(1k)=1/(1+exp(-state_s2_temp2(1k)));
%?????????????state_s2(1k)=sum(sum(state_s2_temp1(::k).*weight_arr2num(::k)));
????????????end
????????????%16個特征數,進入全連接層1
????????????state_f1=state_s2*weight_full_1;
????????????%進入全連接層2
????????????state_f2=state_f1*weight_full_2;
????????????%%?誤差計算部分
????????????Error=state_f2-label;
????????????Error_Cost=sum(Error.^2);
????????????if(Error_Cost<1e-4)
????????????????break;
????????????end
????????????%%?參數調整部分
????????????[kernel_c1kernel_c2weight_c2weight_full_1weight_full_2weight_arr2num]=CNN_upweight1(Errortrain_data...
????????????????state_c1state_s1...
????????????????state_c2state_s2_temp1...
????????????????state_s2state_s2_temp2...
????????????????state_f1state_f2...
????????????????kernel_c1kernel_c2...
????????????????weight_c2weight_full_1...
????????????????weight_full_2weight_arr2numyitastate_c2_temp);
????????????
????????end
????end
end
disp(‘網絡訓練完成,開始檢驗......‘);
%%?檢驗部分
count_num=0;
for?n=10:15
????for?m=0

?屬性????????????大小?????日期????時間???名稱
-----------?---------??----------?-----??----
?????目錄???????????0??2018-11-30?16:47??CNN_LeNet_test\
?????文件????????4655??2016-10-21?21:25??CNN_LeNet_test\CNN_LeNet_main.m
?????文件????????5179??2016-10-17?16:20??CNN_LeNet_test\CNN_upweight.m
?????文件????????4729??2016-10-18?19:44??CNN_LeNet_test\CNN_upweight1.m
?????文件????????4478??2016-10-18?12:08??CNN_LeNet_test\CNN_upweight2.m
?????文件?????????298??2016-10-15?16:48??CNN_LeNet_test\convolution.m
?????文件?????????430??2016-10-15?19:49??CNN_LeNet_test\convolution_c2.m
?????文件?????????232??2016-10-21?21:23??CNN_LeNet_test\init_kernel.m
?????文件?????????292??2016-10-15?16:51??CNN_LeNet_test\pooling.m
?????目錄???????????0??2018-11-30?16:47??CNN_LeNet_test\test_image\
?????文件????????1862??2010-05-28?18:22??CNN_LeNet_test\test_image\0_0.bmp
?????文件????????1862??2010-05-28?18:22??CNN_LeNet_test\test_image\0_1.bmp
?????文件????????1862??2010-05-28?18:22??CNN_LeNet_test\test_image\0_10.bmp
?????文件????????1862??2010-05-28?18:22??CNN_LeNet_test\test_image\0_100.bmp
?????文件????????1862??2010-05-28?18:22??CNN_LeNet_test\test_image\0_101.bmp
?????文件????????1862??2010-05-28?18:22??CNN_LeNet_test\test_image\0_102.bmp
?????文件????????1862??2010-05-28?18:22??CNN_LeNet_test\test_image\0_103.bmp
?????文件????????1862??2010-05-28?18:22??CNN_LeNet_test\test_image\0_104.bmp
?????文件????????1862??2010-05-28?18:22??CNN_LeNet_test\test_image\0_105.bmp
?????文件????????1862??2010-05-28?18:22??CNN_LeNet_test\test_image\0_106.bmp
?????文件????????1862??2010-05-28?18:22??CNN_LeNet_test\test_image\0_107.bmp
?????文件????????1862??2010-05-28?18:22??CNN_LeNet_test\test_image\0_108.bmp
?????文件????????1862??2010-05-28?18:22??CNN_LeNet_test\test_image\0_109.bmp
?????文件????????1862??2010-05-28?18:22??CNN_LeNet_test\test_image\0_11.bmp
?????文件????????1862??2010-05-28?18:22??CNN_LeNet_test\test_image\0_110.bmp
?????文件????????1862??2010-05-28?18:22??CNN_LeNet_test\test_image\0_111.bmp
?????文件????????1862??2010-05-28?18:22??CNN_LeNet_test\test_image\0_112.bmp
?????文件????????1862??2010-05-28?18:22??CNN_LeNet_test\test_image\0_113.bmp
?????文件????????1862??2010-05-28?18:22??CNN_LeNet_test\test_image\0_114.bmp
?????文件????????1862??2010-05-28?18:22??CNN_LeNet_test\test_image\0_115.bmp
?????文件????????1862??2010-05-28?18:22??CNN_LeNet_test\test_image\0_116.bmp
............此處省略9900個文件信息

評論

共有 條評論